SagiPolaczek commited on
Commit
45dbc83
1 Parent(s): 2c72cd8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -10,7 +10,7 @@ tags:
10
  library_name: biomed
11
  license: apache-2.0
12
  base_model:
13
- - ibm/biomed.omics.bl.sm.ma-ted-400m
14
  ---
15
 
16
  Accurate prediction of drug-target binding affinity is essential in the early stages of drug discovery.
@@ -33,13 +33,13 @@ By default, we are using Drug+Target cold-split, as provided by tdcommons.
33
 
34
  ## Usage
35
 
36
- Using `ibm/biomed.omics.bl.sm.ma-ted-400m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
37
 
38
  ```
39
  pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git#egg=mammal[examples]
40
  ```
41
 
42
- A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-400m`:
43
  ```python
44
  import os
45
  from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
@@ -53,11 +53,11 @@ target_seq = "NLMKRCTRGFRKLGKCTTLEEEKCKTLYPRGQCTCSDSKMNTHSCDCKSC"
53
  drug_seq = "CC(=O)NCCC1=CNc2c1cc(OC)cc2"
54
 
55
  # Load Model
56
- model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.dti_bindingdb_pkd")
57
  model.eval()
58
 
59
  # Load Tokenizer
60
- tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.dti_bindingdb_pkd")
61
 
62
  # convert to MAMMAL style
63
  sample_dict = {"target_seq": target_seq, "drug_seq": drug_seq}
 
10
  library_name: biomed
11
  license: apache-2.0
12
  base_model:
13
+ - ibm/biomed.omics.bl.sm.ma-ted-458m
14
  ---
15
 
16
  Accurate prediction of drug-target binding affinity is essential in the early stages of drug discovery.
 
33
 
34
  ## Usage
35
 
36
+ Using `ibm/biomed.omics.bl.sm.ma-ted-458m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
37
 
38
  ```
39
  pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git#egg=mammal[examples]
40
  ```
41
 
42
+ A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-458m`:
43
  ```python
44
  import os
45
  from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
 
53
  drug_seq = "CC(=O)NCCC1=CNc2c1cc(OC)cc2"
54
 
55
  # Load Model
56
+ model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd")
57
  model.eval()
58
 
59
  # Load Tokenizer
60
+ tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd")
61
 
62
  # convert to MAMMAL style
63
  sample_dict = {"target_seq": target_seq, "drug_seq": drug_seq}