SagiPolaczek
commited on
Commit
•
45dbc83
1
Parent(s):
2c72cd8
Update README.md
Browse files
README.md
CHANGED
@@ -10,7 +10,7 @@ tags:
|
|
10 |
library_name: biomed
|
11 |
license: apache-2.0
|
12 |
base_model:
|
13 |
-
- ibm/biomed.omics.bl.sm.ma-ted-
|
14 |
---
|
15 |
|
16 |
Accurate prediction of drug-target binding affinity is essential in the early stages of drug discovery.
|
@@ -33,13 +33,13 @@ By default, we are using Drug+Target cold-split, as provided by tdcommons.
|
|
33 |
|
34 |
## Usage
|
35 |
|
36 |
-
Using `ibm/biomed.omics.bl.sm.ma-ted-
|
37 |
|
38 |
```
|
39 |
pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git#egg=mammal[examples]
|
40 |
```
|
41 |
|
42 |
-
A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-
|
43 |
```python
|
44 |
import os
|
45 |
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
@@ -53,11 +53,11 @@ target_seq = "NLMKRCTRGFRKLGKCTTLEEEKCKTLYPRGQCTCSDSKMNTHSCDCKSC"
|
|
53 |
drug_seq = "CC(=O)NCCC1=CNc2c1cc(OC)cc2"
|
54 |
|
55 |
# Load Model
|
56 |
-
model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-
|
57 |
model.eval()
|
58 |
|
59 |
# Load Tokenizer
|
60 |
-
tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-
|
61 |
|
62 |
# convert to MAMMAL style
|
63 |
sample_dict = {"target_seq": target_seq, "drug_seq": drug_seq}
|
|
|
10 |
library_name: biomed
|
11 |
license: apache-2.0
|
12 |
base_model:
|
13 |
+
- ibm/biomed.omics.bl.sm.ma-ted-458m
|
14 |
---
|
15 |
|
16 |
Accurate prediction of drug-target binding affinity is essential in the early stages of drug discovery.
|
|
|
33 |
|
34 |
## Usage
|
35 |
|
36 |
+
Using `ibm/biomed.omics.bl.sm.ma-ted-458m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
|
37 |
|
38 |
```
|
39 |
pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git#egg=mammal[examples]
|
40 |
```
|
41 |
|
42 |
+
A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-458m`:
|
43 |
```python
|
44 |
import os
|
45 |
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
|
|
53 |
drug_seq = "CC(=O)NCCC1=CNc2c1cc(OC)cc2"
|
54 |
|
55 |
# Load Model
|
56 |
+
model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd")
|
57 |
model.eval()
|
58 |
|
59 |
# Load Tokenizer
|
60 |
+
tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd")
|
61 |
|
62 |
# convert to MAMMAL style
|
63 |
sample_dict = {"target_seq": target_seq, "drug_seq": drug_seq}
|