SagiPolaczek moshe-raboh commited on
Commit
2c72cd8
1 Parent(s): c62afba

Update README.md (#3)

Browse files

- Update README.md (c79160b1a47bcefd85b0fc17a32b5891e9ccd17e)


Co-authored-by: Moshe Raboh <[email protected]>

Files changed (1) hide show
  1. README.md +10 -7
README.md CHANGED
@@ -36,22 +36,25 @@ By default, we are using Drug+Target cold-split, as provided by tdcommons.
36
  Using `ibm/biomed.omics.bl.sm.ma-ted-400m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
37
 
38
  ```
39
- pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
40
  ```
41
 
42
  A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-400m`:
43
  ```python
44
  import os
45
-
46
  from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
47
- from fuse.data.utils.collates import CollateDefault
48
 
49
  from mammal.examples.dti_bindingdb_kd.task import DtiBindingdbKdTask
50
  from mammal.keys import CLS_PRED, SCORES
51
  from mammal.model import Mammal
52
 
 
 
 
 
53
  # Load Model
54
  model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.dti_bindingdb_pkd")
 
55
 
56
  # Load Tokenizer
57
  tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.dti_bindingdb_pkd")
@@ -65,11 +68,11 @@ sample_dict = DtiBindingdbKdTask.data_preprocessing(
65
  drug_sequence_key="drug_seq",
66
  norm_y_mean=None,
67
  norm_y_std=None,
68
- device=nn_model.device,
69
  )
70
 
71
- # forward pass - encoder_only mode which supports scalars predictions
72
- batch_dict = nn_model.forward_encoder_only([sample_dict])
73
 
74
  # Post-process the model's output
75
  batch_dict = DtiBindingdbKdTask.process_model_output(
@@ -91,7 +94,7 @@ For more advanced usage, see our detailed example at: on `https://github.com/Bio
91
 
92
  ## Citation
93
 
94
- If you found our work useful, please consider to give a star to the repo and cite our paper:
95
  ```
96
  @article{TBD,
97
  title={TBD},
 
36
  Using `ibm/biomed.omics.bl.sm.ma-ted-400m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
37
 
38
  ```
39
+ pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git#egg=mammal[examples]
40
  ```
41
 
42
  A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-400m`:
43
  ```python
44
  import os
 
45
  from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
 
46
 
47
  from mammal.examples.dti_bindingdb_kd.task import DtiBindingdbKdTask
48
  from mammal.keys import CLS_PRED, SCORES
49
  from mammal.model import Mammal
50
 
51
+ # input
52
+ target_seq = "NLMKRCTRGFRKLGKCTTLEEEKCKTLYPRGQCTCSDSKMNTHSCDCKSC"
53
+ drug_seq = "CC(=O)NCCC1=CNc2c1cc(OC)cc2"
54
+
55
  # Load Model
56
  model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.dti_bindingdb_pkd")
57
+ model.eval()
58
 
59
  # Load Tokenizer
60
  tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.dti_bindingdb_pkd")
 
68
  drug_sequence_key="drug_seq",
69
  norm_y_mean=None,
70
  norm_y_std=None,
71
+ device=model.device,
72
  )
73
 
74
+ # forward pass - encoder_only mode which supports scalar predictions
75
+ batch_dict = model.forward_encoder_only([sample_dict])
76
 
77
  # Post-process the model's output
78
  batch_dict = DtiBindingdbKdTask.process_model_output(
 
94
 
95
  ## Citation
96
 
97
+ If you found our work useful, please consider giving a star to the repo and cite our paper:
98
  ```
99
  @article{TBD,
100
  title={TBD},