|
import torch.nn as nn
|
|
|
|
import torch
|
|
from . import common
|
|
|
|
from lambda_networks import LambdaLayer
|
|
|
|
|
|
def build_model(args):
|
|
return ResNet(args)
|
|
|
|
|
|
class ConvGRU(nn.Module):
|
|
def __init__(self, hidden_dim=128, input_dim=192+128):
|
|
super(ConvGRU, self).__init__()
|
|
self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
|
self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
|
self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
|
|
|
def forward(self, h, x):
|
|
hx = torch.cat([h, x], dim=1)
|
|
|
|
z = torch.sigmoid(self.convz(hx))
|
|
r = torch.sigmoid(self.convr(hx))
|
|
q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1)))
|
|
|
|
|
|
|
|
return (1-z) * h + z * q
|
|
|
|
class SepConvGRU(nn.Module):
|
|
def __init__(self, hidden_dim=128, input_dim=192+128):
|
|
super(SepConvGRU, self).__init__()
|
|
self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
|
self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
|
self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
|
|
|
self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
|
self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
|
self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
|
|
|
|
|
def forward(self, h, x):
|
|
|
|
hx = torch.cat([h, x], dim=1)
|
|
z = torch.sigmoid(self.convz1(hx))
|
|
r = torch.sigmoid(self.convr1(hx))
|
|
q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1)))
|
|
h = (1-z) * h + z * q
|
|
|
|
|
|
hx = torch.cat([h, x], dim=1)
|
|
z = torch.sigmoid(self.convz2(hx))
|
|
r = torch.sigmoid(self.convr2(hx))
|
|
q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1)))
|
|
h = (1-z) * h + z * q
|
|
|
|
return h
|
|
|
|
|
|
class ResNet(nn.Module):
|
|
def __init__(
|
|
self,
|
|
args
|
|
):
|
|
super(ResNet, self).__init__()
|
|
|
|
self.in_channels = 3
|
|
self.out_channels = 3
|
|
|
|
self.rgb_range = args.rgb_range
|
|
self.mean = self.rgb_range / 2
|
|
|
|
self.n_feats = args.n_feats
|
|
self.kernel_size = args.kernel_size
|
|
self.n_resblocks = args.n_resblocks
|
|
|
|
self.recurrence = args.n_scales
|
|
|
|
modules = []
|
|
m_head=[common.default_conv(self.in_channels, self.n_feats, self.kernel_size)]
|
|
for i in range(3):
|
|
m_head.append(common.ResBlock(self.n_feats, self.kernel_size))
|
|
for _ in range(self.n_resblocks // 2):
|
|
modules.append(common.ResBlock(self.n_feats, self.kernel_size))
|
|
modules.append(
|
|
LambdaLayer(
|
|
dim=self.n_feats, dim_out=self.n_feats, r=23, dim_k=16, heads=4, dim_u=4
|
|
)
|
|
)
|
|
for _ in range(self.n_resblocks // 2):
|
|
modules.append(common.ResBlock(self.n_feats, self.kernel_size))
|
|
m_tail=[]
|
|
|
|
for i in range(3):
|
|
m_tail.append(common.ResBlock(self.n_feats, self.kernel_size))
|
|
|
|
m_tail.append(
|
|
common.default_conv(self.n_feats, self.out_channels, self.kernel_size)
|
|
)
|
|
self.head=nn.Sequential(*m_head)
|
|
self.body = nn.Sequential(*modules)
|
|
self.tail=nn.Sequential(*m_tail)
|
|
self.gru=SepConvGRU(hidden_dim=self.n_feats,input_dim=self.n_feats)
|
|
|
|
def forward(self, input):
|
|
input = input[0] - self.mean
|
|
input=self.head(input)
|
|
hidden=input.clone()
|
|
output_lst=[None]*self.recurrence
|
|
for i in range(self.recurrence):
|
|
gru_out=self.gru(hidden,input)
|
|
res=self.body(gru_out)
|
|
gru_out=res+gru_out
|
|
hidden=gru_out
|
|
tail_out=self.tail(gru_out)
|
|
output_lst[i] = self.tail(gru_out) + self.mean
|
|
return output_lst
|
|
|