import torch.nn as nn import torch from . import common from lambda_networks import LambdaLayer def build_model(args): return ResNet(args) class ConvGRU(nn.Module): def __init__(self, hidden_dim=128, input_dim=192+128): super(ConvGRU, self).__init__() self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) def forward(self, h, x): hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz(hx)) r = torch.sigmoid(self.convr(hx)) q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1))) # h = (1-z) * h + z * q # return h return (1-z) * h + z * q class SepConvGRU(nn.Module): def __init__(self, hidden_dim=128, input_dim=192+128): super(SepConvGRU, self).__init__() self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) def forward(self, h, x): # horizontal hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz1(hx)) r = torch.sigmoid(self.convr1(hx)) q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1))) h = (1-z) * h + z * q # vertical hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz2(hx)) r = torch.sigmoid(self.convr2(hx)) q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1))) h = (1-z) * h + z * q return h class ResNet(nn.Module): def __init__( self, args ): super(ResNet, self).__init__() self.in_channels = 3 self.out_channels = 3 self.rgb_range = args.rgb_range self.mean = self.rgb_range / 2 self.n_feats = args.n_feats self.kernel_size = args.kernel_size self.n_resblocks = args.n_resblocks self.recurrence = args.n_scales modules = [] m_head=[common.default_conv(self.in_channels, self.n_feats, self.kernel_size)] for i in range(3): m_head.append(common.ResBlock(self.n_feats, self.kernel_size)) for _ in range(self.n_resblocks // 2): modules.append(common.ResBlock(self.n_feats, self.kernel_size)) modules.append( LambdaLayer( dim=self.n_feats, dim_out=self.n_feats, r=23, dim_k=16, heads=4, dim_u=4 ) ) for _ in range(self.n_resblocks // 2): modules.append(common.ResBlock(self.n_feats, self.kernel_size)) m_tail=[] for i in range(3): m_tail.append(common.ResBlock(self.n_feats, self.kernel_size)) m_tail.append( common.default_conv(self.n_feats, self.out_channels, self.kernel_size) ) self.head=nn.Sequential(*m_head) self.body = nn.Sequential(*modules) self.tail=nn.Sequential(*m_tail) self.gru=SepConvGRU(hidden_dim=self.n_feats,input_dim=self.n_feats) def forward(self, input): input = input[0] - self.mean input=self.head(input) hidden=input.clone() output_lst=[None]*self.recurrence for i in range(self.recurrence): gru_out=self.gru(hidden,input) res=self.body(gru_out) gru_out=res+gru_out hidden=gru_out tail_out=self.tail(gru_out) output_lst[i] = self.tail(gru_out) + self.mean return output_lst