nsd_model / config.pyi
huzey's picture
Upload folder using huggingface_hub
ec378c3 verified
import typing as T
from yacs.config import CfgNode as CN
_C: AutoConfig
class Experimental(CN):
SHUFFLE_IMAGES: bool
BLANK_IMAGE: bool
T_IMAGE: int
USE_RETINA_MAPPER: bool
USE_LAYER_SELECTOR: bool
USE_BHV: bool
USE_BHV_PASSTHROUGH: bool
BEHV_ONLY: bool
BEHV_SELECTION: T.Sequence
BACKBONE_NOGRAD: bool
STRAIGHT_FORWARD: bool
STRAIGHT_FORWARD_BUT_KEEP_BACKBONE_GRAD: bool
ANOTHER_SPLIT: bool
SHUFFLE_VAL: bool
NO_SPLIT: bool
USE_DEV_MODEL: bool
USE_FEAT: bool
CENTER_FRAME: int
REPLACE_BLANK_WITH_RANDOM: bool
REPLACE_NONBLANK_WITH_RANDOM: bool
USE_PREV_FRAME: bool
USE_PREV_BEHV: bool
USE_CURRENT_FRAME: bool
USE_CURRENT_BEHV: bool
USE_FTR_FRAME: bool
USE_FTR_BEHV: bool
USE_COORDS: bool
MAX_DATASET_SIZE: int
class Datamodule(CN):
BATCH_SIZE: int
NUM_WORKERS: int
PIN_MEMORY: bool
FEATURE_EXTRACTOR_MODE: bool
class Dataset(CN):
IMAGE_RESOLUTION: T.Sequence
N_PREV_FRAMES: int
N_FTR_FRAMES: int
CACHE_DIR: str
SUBJECT_LIST: T.Sequence
ROIS: T.Sequence
FMRI_SPACE: str
FILTER_BY_SESSION: T.Sequence
ROOT: str
DARK_POSTFIX: str
class Position_encoding(CN):
IN_DIM: int
MAX_STEPS: int
FEATURES: int
PERIODS: int
class Lora(CN):
SCALE: float
RANK: int
class Adaptive_ln(CN):
SCALE: float
class Backbone(CN):
NAME: str
CACHE_DIR: str
LAYERS: T.Sequence
FEATURE_DIMS: T.Sequence
CLS_DIMS: T.Sequence
LORA: Lora
ADAPTIVE_LN: Adaptive_ln
class Lora_1(CN):
SCALE: float
RANK: int
class Adaptive_ln_1(CN):
SCALE: float
class Backbone_small(CN):
NAME: str
LAYERS: T.Sequence
CLS_DIMS: T.Sequence
T_DIM: int
WIDTH: int
MERGE_WIDTH: int
LORA: Lora_1
ADAPTIVE_LN: Adaptive_ln_1
class Prev_feat(CN):
DIM: int
class Conv_head(CN):
MAX_DIM: int
KERNEL_SIZES: T.Sequence
DEPTHS: T.Sequence
WIDTH: int
SIMPLE: bool
class Cond(CN):
USE: bool
DROPOUT: float
IN_DIM: int
DIM: int
PASSTHROUGH_DIM: int
class Coords_mlp(CN):
WIDTH: int
DEPTH: int
LOG: bool
class Retina_mapper(CN):
CONSTANT_SIGMA: float
class Layer_selector(CN): {}
class Bottleneck(CN):
RANK: int
OUT_DIM: int
class Mlp(CN):
DEPTH: int
WIDTH: int
class Shared(CN):
USE: bool
MLP: Mlp
class Voxel_outs(CN):
SHARED: Shared
class Model(CN):
WIDTH_RATIO: float
BACKBONE: Backbone
BACKBONE_SMALL: Backbone_small
PREV_FEAT: Prev_feat
CONV_HEAD: Conv_head
COND: Cond
MAX_TRAIN_VOXELS: int
CHUNK_SIZE: int
COORDS_MLP: Coords_mlp
RETINA_MAPPER: Retina_mapper
LAYER_SELECTOR: Layer_selector
BOTTLENECK: Bottleneck
VOXEL_OUTS: Voxel_outs
class Sync(CN):
USE: bool
STAGE: str
SKIP_EPOCHS: int
EMA_BETA: float
EMA_BIAS_CORRECTION: bool
UPDATE_RULE: str
EXP_SCALE: float
EXP_SHIFT: float
LOG_SHIFT: float
EMA_KEY: str
class Anneal(CN):
T: int
class Dark(CN):
USE: bool
MAX_EPOCH: int
GT_ROIS: T.Sequence
GT_SCALE_UP_COEF: float
ANNEAL: Anneal
class Loss(CN):
NAME: str
SMOOTH_L1_BETA: float
SYNC: Sync
DARK: Dark
class Regularizer(CN):
LAYER: float
class Scheduler(CN):
T_INITIAL: int
T_MULT: float
CYCLE_DECAY: float
CYCLE_LIMIT: int
WARMUP_T: int
K_DECAY: float
LR_MIN: float
LR_MIN_WARMUP: float
class Optimizer(CN):
NAME: str
LR: float
WEIGHT_DECAY: float
SCHEDULER: Scheduler
class Early_stop(CN):
PATIENCE: int
class Checkpoint(CN):
SAVE_TOP_K: int
REMOVE: bool
LOAD_BEST_ON_VAL: bool
LOAD_BEST_ON_END: bool
class Callbacks(CN):
EARLY_STOP: Early_stop
CHECKPOINT: Checkpoint
class Trainer(CN):
DDP: bool
PRECISION: int
GRADIENT_CLIP_VAL: float
MAX_EPOCHS: int
MAX_STEPS: int
ACCUMULATE_GRAD_BATCHES: int
VAL_CHECK_INTERVAL: float
LIMIT_TRAIN_BATCHES: float
LIMIT_VAL_BATCHES: float
LOG_TRAIN_N_STEPS: int
CALLBACKS: Callbacks
class Model_soup(CN):
USE: bool
RECIPE: str
GREEDY_TARGET: str
class Analysis(CN):
SAVE_NEURON_LOCATION: bool
DRAW_NEURON_LOCATION: bool
class AutoConfig(CN):
DESCRIPTION: str
EXPERIMENTAL: Experimental
DATAMODULE: Datamodule
DATASET: Dataset
POSITION_ENCODING: Position_encoding
MODEL: Model
LOSS: Loss
REGULARIZER: Regularizer
OPTIMIZER: Optimizer
TRAINER: Trainer
MODEL_SOUP: Model_soup
RESULTS_DIR: str
CHECKPOINT_DIR: str
ANALYSIS: Analysis