File size: 4,634 Bytes
ec378c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import typing as T
from yacs.config import CfgNode as CN
_C: AutoConfig
class Experimental(CN):
SHUFFLE_IMAGES: bool
BLANK_IMAGE: bool
T_IMAGE: int
USE_RETINA_MAPPER: bool
USE_LAYER_SELECTOR: bool
USE_BHV: bool
USE_BHV_PASSTHROUGH: bool
BEHV_ONLY: bool
BEHV_SELECTION: T.Sequence
BACKBONE_NOGRAD: bool
STRAIGHT_FORWARD: bool
STRAIGHT_FORWARD_BUT_KEEP_BACKBONE_GRAD: bool
ANOTHER_SPLIT: bool
SHUFFLE_VAL: bool
NO_SPLIT: bool
USE_DEV_MODEL: bool
USE_FEAT: bool
CENTER_FRAME: int
REPLACE_BLANK_WITH_RANDOM: bool
REPLACE_NONBLANK_WITH_RANDOM: bool
USE_PREV_FRAME: bool
USE_PREV_BEHV: bool
USE_CURRENT_FRAME: bool
USE_CURRENT_BEHV: bool
USE_FTR_FRAME: bool
USE_FTR_BEHV: bool
USE_COORDS: bool
MAX_DATASET_SIZE: int
class Datamodule(CN):
BATCH_SIZE: int
NUM_WORKERS: int
PIN_MEMORY: bool
FEATURE_EXTRACTOR_MODE: bool
class Dataset(CN):
IMAGE_RESOLUTION: T.Sequence
N_PREV_FRAMES: int
N_FTR_FRAMES: int
CACHE_DIR: str
SUBJECT_LIST: T.Sequence
ROIS: T.Sequence
FMRI_SPACE: str
FILTER_BY_SESSION: T.Sequence
ROOT: str
DARK_POSTFIX: str
class Position_encoding(CN):
IN_DIM: int
MAX_STEPS: int
FEATURES: int
PERIODS: int
class Lora(CN):
SCALE: float
RANK: int
class Adaptive_ln(CN):
SCALE: float
class Backbone(CN):
NAME: str
CACHE_DIR: str
LAYERS: T.Sequence
FEATURE_DIMS: T.Sequence
CLS_DIMS: T.Sequence
LORA: Lora
ADAPTIVE_LN: Adaptive_ln
class Lora_1(CN):
SCALE: float
RANK: int
class Adaptive_ln_1(CN):
SCALE: float
class Backbone_small(CN):
NAME: str
LAYERS: T.Sequence
CLS_DIMS: T.Sequence
T_DIM: int
WIDTH: int
MERGE_WIDTH: int
LORA: Lora_1
ADAPTIVE_LN: Adaptive_ln_1
class Prev_feat(CN):
DIM: int
class Conv_head(CN):
MAX_DIM: int
KERNEL_SIZES: T.Sequence
DEPTHS: T.Sequence
WIDTH: int
SIMPLE: bool
class Cond(CN):
USE: bool
DROPOUT: float
IN_DIM: int
DIM: int
PASSTHROUGH_DIM: int
class Coords_mlp(CN):
WIDTH: int
DEPTH: int
LOG: bool
class Retina_mapper(CN):
CONSTANT_SIGMA: float
class Layer_selector(CN): {}
class Bottleneck(CN):
RANK: int
OUT_DIM: int
class Mlp(CN):
DEPTH: int
WIDTH: int
class Shared(CN):
USE: bool
MLP: Mlp
class Voxel_outs(CN):
SHARED: Shared
class Model(CN):
WIDTH_RATIO: float
BACKBONE: Backbone
BACKBONE_SMALL: Backbone_small
PREV_FEAT: Prev_feat
CONV_HEAD: Conv_head
COND: Cond
MAX_TRAIN_VOXELS: int
CHUNK_SIZE: int
COORDS_MLP: Coords_mlp
RETINA_MAPPER: Retina_mapper
LAYER_SELECTOR: Layer_selector
BOTTLENECK: Bottleneck
VOXEL_OUTS: Voxel_outs
class Sync(CN):
USE: bool
STAGE: str
SKIP_EPOCHS: int
EMA_BETA: float
EMA_BIAS_CORRECTION: bool
UPDATE_RULE: str
EXP_SCALE: float
EXP_SHIFT: float
LOG_SHIFT: float
EMA_KEY: str
class Anneal(CN):
T: int
class Dark(CN):
USE: bool
MAX_EPOCH: int
GT_ROIS: T.Sequence
GT_SCALE_UP_COEF: float
ANNEAL: Anneal
class Loss(CN):
NAME: str
SMOOTH_L1_BETA: float
SYNC: Sync
DARK: Dark
class Regularizer(CN):
LAYER: float
class Scheduler(CN):
T_INITIAL: int
T_MULT: float
CYCLE_DECAY: float
CYCLE_LIMIT: int
WARMUP_T: int
K_DECAY: float
LR_MIN: float
LR_MIN_WARMUP: float
class Optimizer(CN):
NAME: str
LR: float
WEIGHT_DECAY: float
SCHEDULER: Scheduler
class Early_stop(CN):
PATIENCE: int
class Checkpoint(CN):
SAVE_TOP_K: int
REMOVE: bool
LOAD_BEST_ON_VAL: bool
LOAD_BEST_ON_END: bool
class Callbacks(CN):
EARLY_STOP: Early_stop
CHECKPOINT: Checkpoint
class Trainer(CN):
DDP: bool
PRECISION: int
GRADIENT_CLIP_VAL: float
MAX_EPOCHS: int
MAX_STEPS: int
ACCUMULATE_GRAD_BATCHES: int
VAL_CHECK_INTERVAL: float
LIMIT_TRAIN_BATCHES: float
LIMIT_VAL_BATCHES: float
LOG_TRAIN_N_STEPS: int
CALLBACKS: Callbacks
class Model_soup(CN):
USE: bool
RECIPE: str
GREEDY_TARGET: str
class Analysis(CN):
SAVE_NEURON_LOCATION: bool
DRAW_NEURON_LOCATION: bool
class AutoConfig(CN):
DESCRIPTION: str
EXPERIMENTAL: Experimental
DATAMODULE: Datamodule
DATASET: Dataset
POSITION_ENCODING: Position_encoding
MODEL: Model
LOSS: Loss
REGULARIZER: Regularizer
OPTIMIZER: Optimizer
TRAINER: Trainer
MODEL_SOUP: Model_soup
RESULTS_DIR: str
CHECKPOINT_DIR: str
ANALYSIS: Analysis
|