YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
TinyLlama Inference
This code demonstrates how to load and run inference using the huzaifa1117/tinyllama_AWQ_4bit
model with quantization for efficient computation on CUDA devices.
Installation
To begin, ensure you have the necessary libraries installed:
pip install torch transformers peft awq
Usage
Model Loading and Inference
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
HqqConfig
)
from peft import PeftModel
import torch
from awq import AutoAWQForCausalLM
# Use CUDA if available
device = torch.device("cuda")
# Model ID and quantization configuration
model_id = "huzaifa1117/tinyllama_AWQ_4bit"
quant_config = HqqConfig(nbits=1, group_size=64, quant_zero=False, quant_scale=False, axis=1)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Load the model with quantization on CUDA
model = AutoAWQForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, use_cache=False, device_map='cuda')
# Move the model to the CUDA device
model.to(device)
# Tokenize input and run inference
input_text = "Your input text here"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
output = model.generate(input_ids, max_length=50)
# Decode and print the output
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(output_text)
Notes
- This setup is designed for efficient computation using quantization, reducing model size and computation cost.
- Ensure that you have a CUDA-capable GPU for running this code efficiently.
Quantization
The model uses HqqConfig
to apply 1-bit quantization for all linear layers, ensuring high performance on resource-constrained hardware:
quant_config = HqqConfig(nbits=1, group_size=64, quant_zero=False, quant_scale=False, axis=1)
License
This project is licensed under the terms of the MIT license.
- Downloads last month
- 2