huihui-ai/SmolLM2-1.7B-Instruct-abliterated
This is an uncensored version of HuggingFaceTB/SmolLM2-1.7B-Instruct created with abliteration (see remove-refusals-with-transformers to know more about it).
If the desired result is not achieved, you can clear the conversation and try again.
How to use
Transformers
pip install transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "huihui-ai/SmolLM2-1.7B-Instruct-abliterated"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
messages = [{"role": "user", "content": "What is the capital of France."}]
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
print(tokenizer.decode(outputs[0]))
- Downloads last month
- 35
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.