|
import torch
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
import os
|
|
from tqdm import tqdm
|
|
|
|
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
|
torch.set_num_threads(1)
|
|
|
|
|
|
base_model_name1 = "huihui-ai/QwQ-32B-Preview-abliterated"
|
|
base_model_name2 = "huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated"
|
|
output_model_dir = "huihui-ai/QwQ-32B-Coder-Fusion-9010"
|
|
|
|
|
|
device = torch.device("cpu")
|
|
|
|
|
|
base_model1 = AutoModelForCausalLM.from_pretrained(base_model_name1, torch_dtype=torch.bfloat16).to(device)
|
|
base_model2 = AutoModelForCausalLM.from_pretrained(base_model_name2, torch_dtype=torch.bfloat16).to(device)
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model_name1)
|
|
|
|
def merge_model_weights(base_model1, base_model2, alpha=0.9):
|
|
"""
|
|
Merge the weights of two models based on a specified ratio and return the updated model.
|
|
The parameter alpha determines the blending ratio, with a default of 0.9
|
|
(90% from base_model1 and 10% from base_model2).
|
|
"""
|
|
|
|
base_model1.lm_head.weight.data = (alpha * base_model1.lm_head.weight.data + (1 - alpha) * base_model2.lm_head.weight.data).to(device)
|
|
base_model1.model.embed_tokens.weight.data = (alpha * base_model1.model.embed_tokens.weight.data + (1 - alpha) * base_model2.model.embed_tokens.weight.data).to(device)
|
|
|
|
|
|
with tqdm(total=len(base_model1.model.layers), desc="Merging weights for layers") as pbar:
|
|
for i in range(len(base_model1.model.layers)):
|
|
base_model1.model.layers[i].input_layernorm.weight.data = (alpha * base_model1.model.layers[i].input_layernorm.weight.data + (1 - alpha) * base_model2.model.layers[i].input_layernorm.weight.data).to(device)
|
|
base_model1.model.layers[i].mlp.down_proj.weight.data = (alpha * base_model1.model.layers[i].mlp.down_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].mlp.down_proj.weight.data).to(device)
|
|
base_model1.model.layers[i].mlp.gate_proj.weight.data = (alpha * base_model1.model.layers[i].mlp.gate_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].mlp.gate_proj.weight.data).to(device)
|
|
base_model1.model.layers[i].mlp.up_proj.weight.data = (alpha * base_model1.model.layers[i].mlp.up_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].mlp.up_proj.weight.data).to(device)
|
|
base_model1.model.layers[i].post_attention_layernorm.weight.data = (alpha * base_model1.model.layers[i].post_attention_layernorm.weight.data + (1 - alpha) * base_model2.model.layers[i].post_attention_layernorm.weight.data).to(device)
|
|
base_model1.model.layers[i].self_attn.q_proj.weight.data = (alpha * base_model1.model.layers[i].self_attn.q_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].self_attn.q_proj.weight.data).to(device)
|
|
base_model1.model.layers[i].self_attn.k_proj.weight.data = (alpha * base_model1.model.layers[i].self_attn.k_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].self_attn.k_proj.weight.data).to(device)
|
|
base_model1.model.layers[i].self_attn.v_proj.weight.data = (alpha * base_model1.model.layers[i].self_attn.v_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].self_attn.v_proj.weight.data).to(device)
|
|
base_model1.model.layers[i].self_attn.o_proj.weight.data = (alpha * base_model1.model.layers[i].self_attn.o_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].self_attn.o_proj.weight.data).to(device)
|
|
|
|
pbar.update(1)
|
|
|
|
|
|
base_model1.model.norm.weight.data = (alpha * base_model1.model.norm.weight.data + (1 - alpha) * base_model2.model.norm.weight.data).to(device)
|
|
|
|
return base_model1
|
|
|
|
|
|
merged_model = merge_model_weights(base_model1, base_model2, alpha=0.9)
|
|
|
|
|
|
merged_model.save_pretrained(output_model_dir)
|
|
tokenizer.save_pretrained(output_model_dir)
|
|
print(f"Merged model and tokenizer saved to {output_model_dir}")
|
|
|