import torch from transformers import AutoModelForCausalLM, AutoTokenizer import os from tqdm import tqdm # Set environment variables and configure the number of threads os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" torch.set_num_threads(1) # Define model names and output directory base_model_name1 = "huihui-ai/QwQ-32B-Preview-abliterated" base_model_name2 = "huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated" output_model_dir = "huihui-ai/QwQ-32B-Coder-Fusion-9010" # Directory to save the merged model # Specify the device for computation device = torch.device("cpu") # Load models and tokenizer onto the CPU base_model1 = AutoModelForCausalLM.from_pretrained(base_model_name1, torch_dtype=torch.bfloat16).to(device) base_model2 = AutoModelForCausalLM.from_pretrained(base_model_name2, torch_dtype=torch.bfloat16).to(device) tokenizer = AutoTokenizer.from_pretrained(base_model_name1) def merge_model_weights(base_model1, base_model2, alpha=0.9): """ Merge the weights of two models based on a specified ratio and return the updated model. The parameter alpha determines the blending ratio, with a default of 0.9 (90% from base_model1 and 10% from base_model2). """ # Merge weights of the output layers base_model1.lm_head.weight.data = (alpha * base_model1.lm_head.weight.data + (1 - alpha) * base_model2.lm_head.weight.data).to(device) base_model1.model.embed_tokens.weight.data = (alpha * base_model1.model.embed_tokens.weight.data + (1 - alpha) * base_model2.model.embed_tokens.weight.data).to(device) # Merge weights for each transformer layer with tqdm(total=len(base_model1.model.layers), desc="Merging weights for layers") as pbar: for i in range(len(base_model1.model.layers)): base_model1.model.layers[i].input_layernorm.weight.data = (alpha * base_model1.model.layers[i].input_layernorm.weight.data + (1 - alpha) * base_model2.model.layers[i].input_layernorm.weight.data).to(device) base_model1.model.layers[i].mlp.down_proj.weight.data = (alpha * base_model1.model.layers[i].mlp.down_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].mlp.down_proj.weight.data).to(device) base_model1.model.layers[i].mlp.gate_proj.weight.data = (alpha * base_model1.model.layers[i].mlp.gate_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].mlp.gate_proj.weight.data).to(device) base_model1.model.layers[i].mlp.up_proj.weight.data = (alpha * base_model1.model.layers[i].mlp.up_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].mlp.up_proj.weight.data).to(device) base_model1.model.layers[i].post_attention_layernorm.weight.data = (alpha * base_model1.model.layers[i].post_attention_layernorm.weight.data + (1 - alpha) * base_model2.model.layers[i].post_attention_layernorm.weight.data).to(device) base_model1.model.layers[i].self_attn.q_proj.weight.data = (alpha * base_model1.model.layers[i].self_attn.q_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].self_attn.q_proj.weight.data).to(device) base_model1.model.layers[i].self_attn.k_proj.weight.data = (alpha * base_model1.model.layers[i].self_attn.k_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].self_attn.k_proj.weight.data).to(device) base_model1.model.layers[i].self_attn.v_proj.weight.data = (alpha * base_model1.model.layers[i].self_attn.v_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].self_attn.v_proj.weight.data).to(device) base_model1.model.layers[i].self_attn.o_proj.weight.data = (alpha * base_model1.model.layers[i].self_attn.o_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].self_attn.o_proj.weight.data).to(device) pbar.update(1) # Update the progress bar # Merge weights for the final normalization layer base_model1.model.norm.weight.data = (alpha * base_model1.model.norm.weight.data + (1 - alpha) * base_model2.model.norm.weight.data).to(device) return base_model1 # Merge the weights of the two models with a blending ratio of 0.9 merged_model = merge_model_weights(base_model1, base_model2, alpha=0.9) # Save the merged model and tokenizer merged_model.save_pretrained(output_model_dir) tokenizer.save_pretrained(output_model_dir) print(f"Merged model and tokenizer saved to {output_model_dir}")