w2v2-libri

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7315
  • Wer: 0.5574

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
7.1828 50.0 200 3.0563 1.0
2.8849 100.0 400 2.9023 1.0
1.5108 150.0 600 1.1468 0.6667
0.1372 200.0 800 1.3749 0.6279
0.0816 250.0 1000 1.3985 0.6224
0.0746 300.0 1200 1.5285 0.6141
0.0556 350.0 1400 1.5496 0.5920
0.0644 400.0 1600 1.6263 0.5947
0.0546 450.0 1800 1.6803 0.5906
0.0491 500.0 2000 1.6155 0.5837
0.0518 550.0 2200 1.6784 0.5698
0.0314 600.0 2400 1.6050 0.5602
0.0048 650.0 2600 1.7703 0.5546
0.0042 700.0 2800 1.7135 0.5615
0.0025 750.0 3000 1.7315 0.5574

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 1.18.3
  • Tokenizers 0.13.2
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.