license: other
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
library_name: transformers
pipeline_tag: text-generation
tags:
- llama-3.1
- meta
- autoawq
This repository is a community-driven quantized version of the original model
meta-llama/Meta-Llama-3.1-8B-Instruct
which is the BF16 half-precision official version released by Meta AI.
Model Information
The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
This repository contains meta-llama/Meta-Llama-3.1-8B-Instruct
quantized using AutoAWQ from FP16 down to INT4 using the GEMM kernels performing zero-point quantization with a group size of 128.
Model Usage
In order to run the inference with Llama 3.1 8B Instruct AWQ in INT4, around 4 GiB of VRAM are needed only for loading the model checkpoint, without including the KV cache or the CUDA graphs, meaning that there should be a bit over that VRAM available.
In order to use the current quantized model, support is offered for different solutions as transformers
, autoawq
, or text-generation-inference
.
π€ transformers
In order to run the inference with Llama 3.1 8B Instruct AWQ in INT4, both torch
and autoawq
need to be installed as:
pip install "torch>=2.2.0,<2.3.0" autoawq --upgrade
Otherwise, running the model inference may fail, since the AutoAWQ kernels are built with PyTorch 2.2.1, meaning that those will break with PyTorch 2.3.0.
Then, the latest version of transformers
need to be installed, being 4.43.0 or higher, as:
pip install "transformers[accelerate]>=4.43.0" --upgrade
To run the inference on top of Llama 3.1 8B Instruct AWQ in INT4 precision, the AWQ model can be instantiated as any other causal language modeling model via AutoModelForCausalLM
and run the inference normally.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4"
prompt = [
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
{"role": "user", "content": "What's Deep Learning?"},
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer.apply_chat_template(
prompt,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
)
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
AutoAWQ
In order to run the inference with Llama 3.1 8B Instruct AWQ in INT4, both torch
and autoawq
need to be installed as:
pip install "torch>=2.2.0,<2.3.0" autoawq --upgrade
Otherwise, running the model inference may fail, since the AutoAWQ kernels are built with PyTorch 2.2.1, meaning that those will break with PyTorch 2.3.0.
Then, the latest version of transformers
need to be installed, being 4.43.0 or higher, as:
pip install "transformers[accelerate]>=4.43.0" --upgrade
Alternatively, one may want to run that via AutoAWQ
even though it's built on top of π€ transformers
, which is the recommended approach instead as described above.
import torch
from awq import AutoAWQForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4"
prompt = [
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
{"role": "user", "content": "What's Deep Learning?"},
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer.apply_chat_template(
prompt,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
model = AutoAWQForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
)
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
The AutoAWQ script has been adapted from AutoAWQ/examples/generate.py
.
π€ Text Generation Inference (TGI)
Coming soon!
Quantization Reproduction
In order to quantize Llama 3.1 8B Instruct using AutoAWQ, you will need to use an instance with at least enough CPU RAM to fit the whole model i.e. ~8GiB, and an NVIDIA GPU with 16GiB of VRAM to quantize it.
In order to quantize Llama 3.1 8B Instruct, first install torch
and autoawq
as follows:
pip install "torch>=2.2.0,<2.3.0" autoawq --upgrade
Otherwise the quantization may fail, since the AutoAWQ kernels are built with PyTorch 2.2.1, meaning that those will break with PyTorch 2.3.0.
Then install the latest version of transformers
as follows:
pip install "transformers>=4.43.0" --upgrade
And then, run the following script, adapted from AutoAWQ/examples/quantize.py
as follows:
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_path = "meta-llama/Meta-Llama-3.1-8B-Instruct"
quant_path = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4"
quant_config = {
"zero_point": True,
"q_group_size": 128,
"w_bit": 4,
"version": "GEMM",
}
# Load model
model = AutoAWQForCausalLM.from_pretrained(
model_path, **{"low_cpu_mem_usage": True, "use_cache": False}
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Quantize
model.quantize(tokenizer, quant_config=quant_config)
# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
print(f'Model is quantized and saved at "{quant_path}"')