Update README.md

#2
by alvarobartt HF staff - opened
Files changed (1) hide show
  1. README.md +30 -102
README.md CHANGED
@@ -24,104 +24,29 @@ tags:
24
 
25
  The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
26
 
27
- **Model developer**: Meta
28
-
29
- **Model Architecture:** Llama 3.1 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
30
-
31
- <table>
32
- <tr>
33
- <td>
34
- </td>
35
- <td><strong>Training Data</strong>
36
- </td>
37
- <td><strong>Params</strong>
38
- </td>
39
- <td><strong>Input modalities</strong>
40
- </td>
41
- <td><strong>Output modalities</strong>
42
- </td>
43
- <td><strong>Context length</strong>
44
- </td>
45
- <td><strong>GQA</strong>
46
- </td>
47
- <td><strong>Token count</strong>
48
- </td>
49
- <td><strong>Knowledge cutoff</strong>
50
- </td>
51
- </tr>
52
- <tr>
53
- <td rowspan="3" >Llama 3.1 (text only)
54
- </td>
55
- <td rowspan="3" >A new mix of publicly available online data.
56
- </td>
57
- <td>8B
58
- </td>
59
- <td>Multilingual Text
60
- </td>
61
- <td>Multilingual Text and code
62
- </td>
63
- <td>128k
64
- </td>
65
- <td>Yes
66
- </td>
67
- <td rowspan="3" >15T+
68
- </td>
69
- <td rowspan="3" >December 2023
70
- </td>
71
- </tr>
72
- <tr>
73
- <td>70B
74
- </td>
75
- <td>Multilingual Text
76
- </td>
77
- <td>Multilingual Text and code
78
- </td>
79
- <td>128k
80
- </td>
81
- <td>Yes
82
- </td>
83
- </tr>
84
- <tr>
85
- <td>405B
86
- </td>
87
- <td>Multilingual Text
88
- </td>
89
- <td>Multilingual Text and code
90
- </td>
91
- <td>128k
92
- </td>
93
- <td>Yes
94
- </td>
95
- </tr>
96
- </table>
97
-
98
- **Supported languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
99
-
100
- **Llama 3.1 family of models**. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.
101
-
102
- **Model Release Date:** July 23, 2024.
103
-
104
- **Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
105
-
106
- **License:** A custom commercial license, the Llama 3.1 Community License, is available at: [https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE)
107
-
108
- Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
109
-
110
- For more information please refer to the original model card [`meta-llama/Meta-Llama-3.1-405B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
111
-
112
- ## Quantized Model Information
113
-
114
- Llama 3.1 405B Instruct has been quantized using [AutoAWQ](https://github.com/casperhansen/AutoAWQ) from FP16 down to INT4 using the GEMM kernels performing zero-point quantization with a group size of 128.
115
-
116
- ## Quantized Model Usage
117
 
118
  > [!NOTE]
119
  > In order to run the inference with Llama 3.1 405B Instruct AWQ in INT4, around 203 GiB of VRAM are needed only for loading the model checkpoint, without including the KV cache or the CUDA graphs, meaning that there should be a bit over that VRAM available.
120
 
121
- In order to use the current quantized model, support is offered for different solutions:
122
 
123
  ### 🤗 transformers
124
 
 
 
 
 
 
 
 
 
 
 
 
 
125
  To run the inference on top of Llama 3.1 405B Instruct AWQ in INT4 precision, the AWQ model can be instantiated as any other causal language modeling model via `AutoModelForCausalLM` and run the inference normally.
126
 
127
  ```python
@@ -135,13 +60,6 @@ prompt = [
135
  ]
136
 
137
  tokenizer = AutoTokenizer.from_pretrained(model_id)
138
- tokenizer.pad_token_id = tokenizer.eos_token_id
139
- tokenizer.padding_side = "left"
140
-
141
- terminators = [
142
- tokenizer.eos_token_id,
143
- tokenizer.convert_tokens_to_ids("<|eot_id|>"),
144
- ]
145
 
146
  inputs = tokenizer.apply_chat_template(prompt, tokenize=True, add_generation_prompt=True, return_tensors="pt").cuda()
147
 
@@ -152,12 +70,24 @@ model = AutoModelForCausalLM.from_pretrained(
152
  device_map="auto",
153
  )
154
 
155
- outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256, eos_token_id=terminators)
156
  print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
157
  ```
158
 
159
  ### AutoAWQ
160
 
 
 
 
 
 
 
 
 
 
 
 
 
161
  Alternatively, one may want to run that via `AutoAWQ` even though it's built on top of 🤗 `transformers`, which is the recommended approach instead as described above.
162
 
163
  ```python
@@ -172,8 +102,6 @@ prompt = [
172
  ]
173
 
174
  tokenizer = AutoTokenizer.from_pretrained(model_id)
175
- tokenizer.pad_token_id = tokenizer.eos_token_id
176
- tokenizer.padding_side = "left"
177
 
178
  inputs = tokenizer.apply_chat_template(prompt, tokenize=True, add_generation_prompt=True, return_tensors="pt").cuda()
179
 
@@ -185,7 +113,7 @@ model = AutoAWQForCausalLM.from_pretrained(
185
  fuse_layers=True,
186
  )
187
 
188
- outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
189
  print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
190
  ```
191
 
 
24
 
25
  The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
26
 
27
+ This repository contains [`meta-llama/Meta-Llama-3.1-405B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) quantized using [AutoAWQ](https://github.com/casperhansen/AutoAWQ) from FP16 down to INT4 using the GEMM kernels performing zero-point quantization with a group size of 128.
28
+
29
+ ## Model Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
  > [!NOTE]
32
  > In order to run the inference with Llama 3.1 405B Instruct AWQ in INT4, around 203 GiB of VRAM are needed only for loading the model checkpoint, without including the KV cache or the CUDA graphs, meaning that there should be a bit over that VRAM available.
33
 
34
+ In order to use the current quantized model, support is offered for different solutions as `transformers`, `autoawq`, or `text-generation-inference`.
35
 
36
  ### 🤗 transformers
37
 
38
+ In order to run the inference with Llama 3.1 405B Instruct AWQ in INT4, both `torch` and `autoawq` need to be installed as:
39
+
40
+ ```bash
41
+ pip install "torch>=2.2.0,<2.3.0" autoawq --upgrade
42
+ ```
43
+
44
+ Then, the latest version of `transformers` need to be installed, being 4.43.0 or higher, as:
45
+
46
+ ```bash
47
+ pip install "transformers[accelerate]>=4.43.0" --upgrade
48
+ ```
49
+
50
  To run the inference on top of Llama 3.1 405B Instruct AWQ in INT4 precision, the AWQ model can be instantiated as any other causal language modeling model via `AutoModelForCausalLM` and run the inference normally.
51
 
52
  ```python
 
60
  ]
61
 
62
  tokenizer = AutoTokenizer.from_pretrained(model_id)
 
 
 
 
 
 
 
63
 
64
  inputs = tokenizer.apply_chat_template(prompt, tokenize=True, add_generation_prompt=True, return_tensors="pt").cuda()
65
 
 
70
  device_map="auto",
71
  )
72
 
73
+ outputs = model.generate(inputs, do_sample=True, max_new_tokens=256)
74
  print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
75
  ```
76
 
77
  ### AutoAWQ
78
 
79
+ In order to run the inference with Llama 3.1 405B Instruct AWQ in INT4, both `torch` and `autoawq` need to be installed as:
80
+
81
+ ```bash
82
+ pip install "torch>=2.2.0,<2.3.0" autoawq --upgrade
83
+ ```
84
+
85
+ Then, the latest version of `transformers` need to be installed, being 4.43.0 or higher, as:
86
+
87
+ ```bash
88
+ pip install "transformers[accelerate]>=4.43.0" --upgrade
89
+ ```
90
+
91
  Alternatively, one may want to run that via `AutoAWQ` even though it's built on top of 🤗 `transformers`, which is the recommended approach instead as described above.
92
 
93
  ```python
 
102
  ]
103
 
104
  tokenizer = AutoTokenizer.from_pretrained(model_id)
 
 
105
 
106
  inputs = tokenizer.apply_chat_template(prompt, tokenize=True, add_generation_prompt=True, return_tensors="pt").cuda()
107
 
 
113
  fuse_layers=True,
114
  )
115
 
116
+ outputs = model.generate(inputs, do_sample=True, max_new_tokens=256)
117
  print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
118
  ```
119