ner_roberta
This model is a fine-tuned version of FacebookAI/roberta-base on the hts98/UIT dataset. It achieves the following results on the evaluation set:
- Loss: 1.7625
- Precision: 0.6042
- Recall: 0.6798
- F1: 0.6398
- Accuracy: 0.8047
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 120.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 122 | 1.1792 | 0.2153 | 0.3176 | 0.2566 | 0.6467 |
No log | 2.0 | 244 | 0.9056 | 0.3515 | 0.4828 | 0.4069 | 0.7298 |
No log | 3.0 | 366 | 0.8212 | 0.4012 | 0.5341 | 0.4582 | 0.7447 |
No log | 4.0 | 488 | 0.7602 | 0.4275 | 0.5653 | 0.4868 | 0.7638 |
1.0934 | 5.0 | 610 | 0.7661 | 0.4252 | 0.5873 | 0.4933 | 0.7646 |
1.0934 | 6.0 | 732 | 0.7474 | 0.4789 | 0.6080 | 0.5358 | 0.7731 |
1.0934 | 7.0 | 854 | 0.7387 | 0.4920 | 0.5979 | 0.5398 | 0.7785 |
1.0934 | 8.0 | 976 | 0.7482 | 0.4917 | 0.6168 | 0.5472 | 0.7814 |
0.5404 | 9.0 | 1098 | 0.7774 | 0.4963 | 0.6266 | 0.5539 | 0.7782 |
0.5404 | 10.0 | 1220 | 0.7820 | 0.5074 | 0.6246 | 0.5599 | 0.7802 |
0.5404 | 11.0 | 1342 | 0.7770 | 0.5092 | 0.6363 | 0.5657 | 0.7817 |
0.5404 | 12.0 | 1464 | 0.8045 | 0.5340 | 0.6303 | 0.5781 | 0.7849 |
0.3509 | 13.0 | 1586 | 0.8088 | 0.5344 | 0.6478 | 0.5856 | 0.7871 |
0.3509 | 14.0 | 1708 | 0.8470 | 0.5049 | 0.6432 | 0.5657 | 0.7768 |
0.3509 | 15.0 | 1830 | 0.8358 | 0.5298 | 0.6415 | 0.5803 | 0.7846 |
0.3509 | 16.0 | 1952 | 0.8826 | 0.5216 | 0.6369 | 0.5735 | 0.7889 |
0.2458 | 17.0 | 2074 | 0.8950 | 0.5477 | 0.6400 | 0.5903 | 0.7904 |
0.2458 | 18.0 | 2196 | 0.8846 | 0.5212 | 0.6506 | 0.5788 | 0.7900 |
0.2458 | 19.0 | 2318 | 0.8888 | 0.5335 | 0.6455 | 0.5842 | 0.7904 |
0.2458 | 20.0 | 2440 | 0.8934 | 0.5345 | 0.6346 | 0.5803 | 0.7915 |
0.1765 | 21.0 | 2562 | 0.9482 | 0.5459 | 0.6449 | 0.5913 | 0.7933 |
0.1765 | 22.0 | 2684 | 0.9499 | 0.5462 | 0.6481 | 0.5928 | 0.7959 |
0.1765 | 23.0 | 2806 | 0.9826 | 0.5495 | 0.6369 | 0.5900 | 0.7869 |
0.1765 | 24.0 | 2928 | 0.9815 | 0.5714 | 0.6475 | 0.6071 | 0.7973 |
0.1273 | 25.0 | 3050 | 1.0080 | 0.5618 | 0.6498 | 0.6026 | 0.7971 |
0.1273 | 26.0 | 3172 | 1.0463 | 0.5472 | 0.6544 | 0.5960 | 0.7940 |
0.1273 | 27.0 | 3294 | 1.0349 | 0.5574 | 0.6475 | 0.5991 | 0.7966 |
0.1273 | 28.0 | 3416 | 1.0559 | 0.5496 | 0.6523 | 0.5966 | 0.7898 |
0.0951 | 29.0 | 3538 | 1.0901 | 0.5433 | 0.6523 | 0.5928 | 0.7918 |
0.0951 | 30.0 | 3660 | 1.1400 | 0.5297 | 0.6532 | 0.5850 | 0.7841 |
0.0951 | 31.0 | 3782 | 1.1601 | 0.5624 | 0.6337 | 0.5959 | 0.7916 |
0.0951 | 32.0 | 3904 | 1.1359 | 0.5498 | 0.6532 | 0.5970 | 0.7883 |
0.0717 | 33.0 | 4026 | 1.1269 | 0.5625 | 0.6564 | 0.6058 | 0.7965 |
0.0717 | 34.0 | 4148 | 1.1758 | 0.5679 | 0.6443 | 0.6037 | 0.7967 |
0.0717 | 35.0 | 4270 | 1.1870 | 0.5493 | 0.6506 | 0.5957 | 0.7898 |
0.0717 | 36.0 | 4392 | 1.1296 | 0.5509 | 0.6558 | 0.5988 | 0.7928 |
0.0552 | 37.0 | 4514 | 1.2164 | 0.5415 | 0.6564 | 0.5934 | 0.7903 |
0.0552 | 38.0 | 4636 | 1.2047 | 0.5516 | 0.6581 | 0.6002 | 0.7943 |
0.0552 | 39.0 | 4758 | 1.2364 | 0.5641 | 0.6604 | 0.6084 | 0.7949 |
0.0552 | 40.0 | 4880 | 1.2481 | 0.5573 | 0.6598 | 0.6042 | 0.7945 |
0.0432 | 41.0 | 5002 | 1.2768 | 0.5684 | 0.6452 | 0.6043 | 0.7926 |
0.0432 | 42.0 | 5124 | 1.2605 | 0.5639 | 0.6595 | 0.6080 | 0.7958 |
0.0432 | 43.0 | 5246 | 1.2495 | 0.5710 | 0.6607 | 0.6126 | 0.7975 |
0.0432 | 44.0 | 5368 | 1.2718 | 0.5762 | 0.6486 | 0.6103 | 0.7955 |
0.0432 | 45.0 | 5490 | 1.2998 | 0.5725 | 0.6512 | 0.6093 | 0.8003 |
0.0331 | 46.0 | 5612 | 1.3469 | 0.5620 | 0.6455 | 0.6008 | 0.7946 |
0.0331 | 47.0 | 5734 | 1.3357 | 0.5722 | 0.6604 | 0.6131 | 0.8010 |
0.0331 | 48.0 | 5856 | 1.3576 | 0.5583 | 0.6578 | 0.6040 | 0.7936 |
0.0331 | 49.0 | 5978 | 1.3397 | 0.5766 | 0.6584 | 0.6148 | 0.7985 |
0.0265 | 50.0 | 6100 | 1.3641 | 0.5671 | 0.6549 | 0.6078 | 0.7961 |
0.0265 | 51.0 | 6222 | 1.3727 | 0.5637 | 0.6546 | 0.6058 | 0.7938 |
0.0265 | 52.0 | 6344 | 1.4025 | 0.5624 | 0.6621 | 0.6082 | 0.7927 |
0.0265 | 53.0 | 6466 | 1.3991 | 0.5672 | 0.6561 | 0.6084 | 0.7916 |
0.0212 | 54.0 | 6588 | 1.4268 | 0.5664 | 0.6655 | 0.6120 | 0.7953 |
0.0212 | 55.0 | 6710 | 1.4377 | 0.5636 | 0.6584 | 0.6073 | 0.7944 |
0.0212 | 56.0 | 6832 | 1.4307 | 0.5689 | 0.6607 | 0.6114 | 0.7953 |
0.0212 | 57.0 | 6954 | 1.4773 | 0.5678 | 0.6472 | 0.6049 | 0.7917 |
0.0171 | 58.0 | 7076 | 1.4626 | 0.5928 | 0.6532 | 0.6215 | 0.7976 |
0.0171 | 59.0 | 7198 | 1.4489 | 0.5726 | 0.6569 | 0.6119 | 0.7991 |
0.0171 | 60.0 | 7320 | 1.4479 | 0.5834 | 0.6592 | 0.6190 | 0.8010 |
0.0171 | 61.0 | 7442 | 1.4649 | 0.5828 | 0.6523 | 0.6156 | 0.7976 |
0.0142 | 62.0 | 7564 | 1.5170 | 0.5726 | 0.6698 | 0.6174 | 0.8006 |
0.0142 | 63.0 | 7686 | 1.4866 | 0.5776 | 0.6661 | 0.6187 | 0.7985 |
0.0142 | 64.0 | 7808 | 1.5446 | 0.5788 | 0.6604 | 0.6169 | 0.8010 |
0.0142 | 65.0 | 7930 | 1.5566 | 0.5687 | 0.6604 | 0.6111 | 0.7935 |
0.0114 | 66.0 | 8052 | 1.5454 | 0.5896 | 0.6632 | 0.6243 | 0.7959 |
0.0114 | 67.0 | 8174 | 1.5341 | 0.6015 | 0.6670 | 0.6325 | 0.7998 |
0.0114 | 68.0 | 8296 | 1.5298 | 0.5864 | 0.6569 | 0.6197 | 0.7963 |
0.0114 | 69.0 | 8418 | 1.5694 | 0.5773 | 0.6638 | 0.6176 | 0.7944 |
0.0101 | 70.0 | 8540 | 1.5914 | 0.5805 | 0.6647 | 0.6198 | 0.7977 |
0.0101 | 71.0 | 8662 | 1.5686 | 0.5728 | 0.6592 | 0.6130 | 0.7957 |
0.0101 | 72.0 | 8784 | 1.6199 | 0.5647 | 0.6695 | 0.6127 | 0.7949 |
0.0101 | 73.0 | 8906 | 1.6344 | 0.5848 | 0.6667 | 0.6230 | 0.7944 |
0.0079 | 74.0 | 9028 | 1.5580 | 0.5915 | 0.6721 | 0.6292 | 0.7970 |
0.0079 | 75.0 | 9150 | 1.6272 | 0.6054 | 0.6655 | 0.6340 | 0.8006 |
0.0079 | 76.0 | 9272 | 1.6267 | 0.5795 | 0.6629 | 0.6184 | 0.7968 |
0.0079 | 77.0 | 9394 | 1.6501 | 0.5758 | 0.6704 | 0.6195 | 0.7959 |
0.0065 | 78.0 | 9516 | 1.6222 | 0.5959 | 0.6690 | 0.6303 | 0.7995 |
0.0065 | 79.0 | 9638 | 1.6543 | 0.5878 | 0.6690 | 0.6258 | 0.7966 |
0.0065 | 80.0 | 9760 | 1.6054 | 0.5922 | 0.6675 | 0.6276 | 0.8009 |
0.0065 | 81.0 | 9882 | 1.6387 | 0.5941 | 0.6690 | 0.6293 | 0.8008 |
0.0053 | 82.0 | 10004 | 1.6453 | 0.6098 | 0.6712 | 0.6390 | 0.8047 |
0.0053 | 83.0 | 10126 | 1.6794 | 0.5803 | 0.6684 | 0.6212 | 0.8005 |
0.0053 | 84.0 | 10248 | 1.7006 | 0.5979 | 0.6690 | 0.6314 | 0.7990 |
0.0053 | 85.0 | 10370 | 1.6820 | 0.5928 | 0.6715 | 0.6297 | 0.7989 |
0.0053 | 86.0 | 10492 | 1.6995 | 0.5920 | 0.6698 | 0.6285 | 0.7983 |
0.0045 | 87.0 | 10614 | 1.6652 | 0.5923 | 0.6624 | 0.6254 | 0.8005 |
0.0045 | 88.0 | 10736 | 1.7196 | 0.5919 | 0.6658 | 0.6267 | 0.7991 |
0.0045 | 89.0 | 10858 | 1.6730 | 0.5953 | 0.6629 | 0.6273 | 0.8054 |
0.0045 | 90.0 | 10980 | 1.7092 | 0.5966 | 0.6747 | 0.6332 | 0.8023 |
0.0037 | 91.0 | 11102 | 1.7260 | 0.6035 | 0.6678 | 0.6340 | 0.8010 |
0.0037 | 92.0 | 11224 | 1.7106 | 0.5998 | 0.6670 | 0.6316 | 0.8030 |
0.0037 | 93.0 | 11346 | 1.7096 | 0.6047 | 0.6747 | 0.6378 | 0.8028 |
0.0037 | 94.0 | 11468 | 1.7220 | 0.5986 | 0.6770 | 0.6354 | 0.8010 |
0.0032 | 95.0 | 11590 | 1.7394 | 0.5966 | 0.6790 | 0.6351 | 0.7994 |
0.0032 | 96.0 | 11712 | 1.7257 | 0.6074 | 0.6744 | 0.6392 | 0.8005 |
0.0032 | 97.0 | 11834 | 1.7008 | 0.6046 | 0.6687 | 0.6350 | 0.8039 |
0.0032 | 98.0 | 11956 | 1.7482 | 0.6029 | 0.6718 | 0.6355 | 0.8032 |
0.0028 | 99.0 | 12078 | 1.7570 | 0.5988 | 0.6690 | 0.6319 | 0.8030 |
0.0028 | 100.0 | 12200 | 1.7332 | 0.5980 | 0.6735 | 0.6335 | 0.8026 |
0.0028 | 101.0 | 12322 | 1.7491 | 0.5902 | 0.6710 | 0.6280 | 0.8011 |
0.0028 | 102.0 | 12444 | 1.7542 | 0.6003 | 0.6735 | 0.6348 | 0.8033 |
0.0021 | 103.0 | 12566 | 1.7371 | 0.5956 | 0.6698 | 0.6305 | 0.8040 |
0.0021 | 104.0 | 12688 | 1.7719 | 0.5914 | 0.6678 | 0.6273 | 0.8007 |
0.0021 | 105.0 | 12810 | 1.7473 | 0.5982 | 0.6667 | 0.6306 | 0.8045 |
0.0021 | 106.0 | 12932 | 1.7518 | 0.6002 | 0.6767 | 0.6362 | 0.8040 |
0.0019 | 107.0 | 13054 | 1.7628 | 0.6010 | 0.6750 | 0.6358 | 0.8048 |
0.0019 | 108.0 | 13176 | 1.8080 | 0.5970 | 0.6770 | 0.6345 | 0.7965 |
0.0019 | 109.0 | 13298 | 1.8028 | 0.5961 | 0.6767 | 0.6339 | 0.7986 |
0.0019 | 110.0 | 13420 | 1.7820 | 0.5996 | 0.6733 | 0.6343 | 0.8030 |
0.0015 | 111.0 | 13542 | 1.7890 | 0.6024 | 0.6764 | 0.6373 | 0.8030 |
0.0015 | 112.0 | 13664 | 1.7686 | 0.6071 | 0.6761 | 0.6398 | 0.8040 |
0.0015 | 113.0 | 13786 | 1.7625 | 0.6042 | 0.6798 | 0.6398 | 0.8047 |
0.0015 | 114.0 | 13908 | 1.7637 | 0.6054 | 0.6735 | 0.6377 | 0.8039 |
0.0013 | 115.0 | 14030 | 1.7680 | 0.6041 | 0.6770 | 0.6385 | 0.8038 |
0.0013 | 116.0 | 14152 | 1.7831 | 0.6001 | 0.6781 | 0.6367 | 0.8029 |
0.0013 | 117.0 | 14274 | 1.7854 | 0.5994 | 0.6758 | 0.6353 | 0.8021 |
0.0013 | 118.0 | 14396 | 1.7762 | 0.6011 | 0.6741 | 0.6355 | 0.8034 |
0.0012 | 119.0 | 14518 | 1.7778 | 0.6011 | 0.6750 | 0.6359 | 0.8028 |
0.0012 | 120.0 | 14640 | 1.7774 | 0.6016 | 0.6747 | 0.6361 | 0.8029 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 3.1.0
- Tokenizers 0.13.3
- Downloads last month
- 4
Model tree for hts98/ner_roberta
Base model
FacebookAI/roberta-baseDataset used to train hts98/ner_roberta
Evaluation results
- Precision on hts98/UITself-reported0.604
- Recall on hts98/UITself-reported0.680
- F1 on hts98/UITself-reported0.640
- Accuracy on hts98/UITself-reported0.805