chatbloom-7b

This is a RLHF enhanced bloom model (chatbloom), fine-tuned based on bloom-7b (Muennighoff et al.). This model only uses English QA datasets for RLHF training, which improves the understanding and generation of English.

Usage

If you don't have a good GPU (mem > 20G) then use the code below:

# pip install -q transformers accelerate
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "hongyin/chatbloom-7b"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)

inputs = tokenizer.encode("Paraphrasing the text: I love you.", return_tensors="pt")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))

Original ouput: Paraphrasing the text: I love you. I love you. I love you. I love
ChatBloom ouput: Paraphrasing the text: I love you. I am a good person.

If you have a good GPU (mem > 20G) then use the code below:

# pip install -q transformers accelerate
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "hongyin/chatbloom-7b"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")

inputs = tokenizer.encode("Paraphrasing the text: I love you.", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))

Original ouput: Paraphrasing the text: I love you. I love you. I love you. I love
ChatBloom ouput: Paraphrasing the text: I love you. I am a good person.

Bibtex entry and citation info

Please cite if you find it helpful.

@article{zhu2023metaaid,
  title={MetaAID 2.0: An Extensible Framework for Developing Metaverse Applications via Human-controllable Pre-trained Models},
  author={Zhu, Hongyin},
  journal={arXiv preprint arXiv:2302.13173},
  year={2023}
}

license: other

Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.