SetFit with sentence-transformers/all-mpnet-base-v2

This is a SetFit model trained on the hojzas/proj8-lab2 dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'def first_with_given_key(iterable, key=lambda x: x):\n keys_in_list = []\n for it in iterable:\n if key(it) not in keys_in_list:\n keys_in_list.append(key(it))\n yield it'
  • 'def first_with_given_key(iterable, key=lambda value: value):\n it = iter(iterable)\n saved_keys = []\n while True:\n try:\n value = next(it)\n if key(value) not in saved_keys:\n saved_keys.append(key(value))\n yield value\n except StopIteration:\n break'
  • 'def first_with_given_key(iterable, key=None):\n if key is None:\n key = lambda x: x\n item_list = []\n key_set = set()\n for item in iterable:\n generated_item = key(item)\n if generated_item not in item_list:\n item_list.append(generated_item)\n yield item'
2
  • 'def first_with_given_key(iterable, key=repr):\n prev_keys = {}\n lamb_key = lambda item: key(item)\n for obj in iterable:\n obj_key = lamb_key(obj)\n if(obj_key) in prev_keys.keys():\n continue\n try:\n prev_keys[hash(obj_key)] = repr(obj)\n except TypeError:\n prev_keys[repr(obj_key)] = repr(obj)\n yield obj'
  • 'def first_with_given_key(iterable, key=repr):\n used_keys = dict()\n get_key = lambda index: key(index)\n for index in iterable:\n index_key = get_key(index)\n if index_key in used_keys.keys():\n continue\n try:\n used_keys[hash(index_key)] = repr(index)\n except TypeError:\n used_keys[repr(index_key)] = repr(index)\n yield index'
  • 'def first_with_given_key(iterable, key=lambda x: x):\n keys_used = {}\n for item in iterable:\n rp = repr(key(item))\n if rp not in keys_used.keys():\n keys_used[rp] = repr(item)\n yield item'
1
  • 'def first_with_given_key(lst, key = lambda x: x):\n res = set()\n for i in lst:\n if repr(key(i)) not in res:\n res.add(repr(key(i)))\n yield i'
  • 'def first_with_given_key(iterable, key=repr):\n set_of_keys = set()\n lambda_key = (lambda x: key(x))\n for item in iterable:\n key = lambda_key(item)\n try:\n key_for_set = hash(key)\n except TypeError:\n key_for_set = repr(key)\n if key_for_set in set_of_keys:\n continue\n set_of_keys.add(key_for_set)\n yield item'
  • 'def first_with_given_key(iterable, key=None):\n if key is None:\n key = identity\n appeared_keys = set()\n for item in iterable:\n generated_key = key(item)\n if not generated_key.hash:\n generated_key = repr(generated_key)\n if generated_key not in appeared_keys:\n appeared_keys.add(generated_key)\n yield item'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("hojzas/proj8-lab2")
# Run inference
preds = model("def first_with_given_key(iterable, key=lambda x: x):\n    keys=[]\n    for i in iterable:\n        if key(i) not in keys:\n            yield i\n            keys.append(key(i))")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 43 92.2069 125
Label Training Sample Count
0 13
1 8
2 8

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0137 1 0.4142 -
0.6849 50 0.0024 -

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Carbon Emitted: 0.002 kg of CO2
  • Hours Used: 0.006 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 4 x NVIDIA RTX A5000
  • CPU Model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
  • RAM Size: 251.49 GB

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 2.2.2
  • Transformers: 4.36.1
  • PyTorch: 2.1.2+cu121
  • Datasets: 2.14.7
  • Tokenizers: 0.15.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
10
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hojzas/proj8-lab2

Finetuned
(189)
this model

Dataset used to train hojzas/proj8-lab2