phishing_3_1

This model is a fine-tuned version of bert-large-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5678
  • Accuracy: 0.9837
  • Precision: 0.9884
  • Recall: 0.9788
  • False Positive Rate: 0.0115

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall False Positive Rate
0.5925 1.0 3025 0.5767 0.9743 0.9853 0.9630 0.0143
0.5784 2.0 6050 0.5709 0.9802 0.9764 0.9841 0.0238
0.5766 3.0 9075 0.6025 0.9490 0.9968 0.9008 0.0029
0.5682 4.0 12100 0.5678 0.9837 0.9884 0.9788 0.0115

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
16
Safetensors
Model size
335M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for hoanganhvu/phishing_3_1

Finetuned
(116)
this model