metadata
library_name: transformers
license: mit
base_model: VRLLab/TurkishBERTweet
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: TurkishBERTweet
results: []
TurkishBERTweet
This model is a fine-tuned version of VRLLab/TurkishBERTweet on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1403
- Precision: 0.5373
- Recall: 0.3243
- F1: 0.4045
- Accuracy: 0.9629
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1645 | 1.0 | 230 | 0.1246 | 0.1988 | 0.375 | 0.2598 | 0.9565 |
0.1285 | 2.0 | 460 | 0.1091 | 0.3077 | 0.4091 | 0.3512 | 0.9706 |
0.0771 | 3.0 | 690 | 0.1623 | 0.5397 | 0.3864 | 0.4503 | 0.9751 |
0.0535 | 4.0 | 920 | 0.1468 | 0.4521 | 0.375 | 0.4099 | 0.9750 |
0.0331 | 5.0 | 1150 | 0.1831 | 0.4333 | 0.4432 | 0.4382 | 0.9743 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0