hkivancoral's picture
End of training
2053696
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_beit_large_sgd_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8783333333333333

smids_10x_beit_large_sgd_0001_fold3

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3045
  • Accuracy: 0.8783

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9373 1.0 750 1.0091 0.4617
0.7639 2.0 1500 0.8536 0.6117
0.6803 3.0 2250 0.7396 0.6933
0.5905 4.0 3000 0.6588 0.75
0.5735 5.0 3750 0.5968 0.7833
0.5021 6.0 4500 0.5507 0.8017
0.4704 7.0 5250 0.5159 0.8133
0.4872 8.0 6000 0.4878 0.8267
0.4458 9.0 6750 0.4650 0.83
0.4154 10.0 7500 0.4469 0.8417
0.4321 11.0 8250 0.4318 0.845
0.3944 12.0 9000 0.4172 0.8433
0.3976 13.0 9750 0.4054 0.8483
0.4242 14.0 10500 0.3948 0.85
0.3817 15.0 11250 0.3850 0.8517
0.3695 16.0 12000 0.3777 0.8517
0.3394 17.0 12750 0.3711 0.8533
0.3418 18.0 13500 0.3639 0.8583
0.3927 19.0 14250 0.3584 0.8633
0.3355 20.0 15000 0.3536 0.8617
0.3182 21.0 15750 0.3485 0.86
0.3252 22.0 16500 0.3442 0.8617
0.3481 23.0 17250 0.3402 0.86
0.352 24.0 18000 0.3367 0.8617
0.3814 25.0 18750 0.3335 0.865
0.3436 26.0 19500 0.3305 0.865
0.2353 27.0 20250 0.3280 0.865
0.3097 28.0 21000 0.3253 0.8683
0.3673 29.0 21750 0.3232 0.8683
0.316 30.0 22500 0.3211 0.87
0.2736 31.0 23250 0.3193 0.8733
0.3111 32.0 24000 0.3172 0.875
0.3586 33.0 24750 0.3157 0.875
0.3482 34.0 25500 0.3143 0.875
0.2894 35.0 26250 0.3130 0.875
0.3247 36.0 27000 0.3121 0.8733
0.3266 37.0 27750 0.3109 0.8733
0.3501 38.0 28500 0.3098 0.8733
0.3018 39.0 29250 0.3089 0.875
0.3416 40.0 30000 0.3082 0.875
0.318 41.0 30750 0.3074 0.875
0.3558 42.0 31500 0.3067 0.8767
0.2993 43.0 32250 0.3061 0.8767
0.2907 44.0 33000 0.3056 0.8767
0.2783 45.0 33750 0.3053 0.8767
0.2937 46.0 34500 0.3050 0.8767
0.3037 47.0 35250 0.3048 0.8783
0.3233 48.0 36000 0.3046 0.8783
0.3074 49.0 36750 0.3045 0.8783
0.2861 50.0 37500 0.3045 0.8783

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2