hkivancoral's picture
End of training
26fc1da
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_beit_large_sgd_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6316666666666667

smids_10x_beit_large_sgd_00001_fold3

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8246
  • Accuracy: 0.6317

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2284 1.0 750 1.2241 0.3517
1.1457 2.0 1500 1.1930 0.365
1.1396 3.0 2250 1.1661 0.3783
1.0897 4.0 3000 1.1425 0.385
1.025 5.0 3750 1.1215 0.3883
1.0158 6.0 4500 1.1022 0.3883
0.9975 7.0 5250 1.0842 0.4017
1.0278 8.0 6000 1.0673 0.4067
0.9784 9.0 6750 1.0514 0.4133
0.9157 10.0 7500 1.0366 0.4317
0.9554 11.0 8250 1.0228 0.4467
0.8899 12.0 9000 1.0096 0.4667
0.9379 13.0 9750 0.9973 0.4767
0.944 14.0 10500 0.9856 0.4867
0.9071 15.0 11250 0.9745 0.4983
0.8922 16.0 12000 0.9641 0.505
0.8643 17.0 12750 0.9544 0.5133
0.8278 18.0 13500 0.9449 0.52
0.9039 19.0 14250 0.9361 0.5317
0.8559 20.0 15000 0.9279 0.5383
0.8179 21.0 15750 0.9199 0.545
0.8248 22.0 16500 0.9124 0.56
0.8379 23.0 17250 0.9052 0.56
0.864 24.0 18000 0.8985 0.565
0.8458 25.0 18750 0.8922 0.575
0.8014 26.0 19500 0.8861 0.5783
0.7589 27.0 20250 0.8805 0.5883
0.8089 28.0 21000 0.8752 0.595
0.8337 29.0 21750 0.8701 0.5983
0.7734 30.0 22500 0.8654 0.6033
0.7463 31.0 23250 0.8610 0.6033
0.7746 32.0 24000 0.8569 0.6067
0.8126 33.0 24750 0.8532 0.6117
0.7894 34.0 25500 0.8496 0.615
0.7634 35.0 26250 0.8463 0.615
0.7765 36.0 27000 0.8433 0.6167
0.8136 37.0 27750 0.8405 0.6217
0.8117 38.0 28500 0.8380 0.6217
0.7707 39.0 29250 0.8357 0.6217
0.7678 40.0 30000 0.8337 0.6267
0.7823 41.0 30750 0.8319 0.6283
0.7728 42.0 31500 0.8303 0.63
0.7705 43.0 32250 0.8289 0.6283
0.7342 44.0 33000 0.8277 0.6283
0.7107 45.0 33750 0.8267 0.6283
0.7263 46.0 34500 0.8259 0.63
0.7101 47.0 35250 0.8253 0.63
0.7724 48.0 36000 0.8249 0.6317
0.7714 49.0 36750 0.8247 0.6317
0.7461 50.0 37500 0.8246 0.6317

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2