smids_10x_beit_large_adamax_00001_fold2

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9196
  • Accuracy: 0.9151

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1587 1.0 750 0.2691 0.9101
0.0471 2.0 1500 0.3138 0.9135
0.0407 3.0 2250 0.4729 0.9118
0.0287 4.0 3000 0.5798 0.9068
0.012 5.0 3750 0.7233 0.9118
0.0109 6.0 4500 0.7175 0.9168
0.0017 7.0 5250 0.7940 0.9085
0.0129 8.0 6000 0.7917 0.9068
0.0001 9.0 6750 0.8466 0.9068
0.0033 10.0 7500 0.8662 0.9002
0.0001 11.0 8250 0.9262 0.9035
0.0005 12.0 9000 0.8648 0.9035
0.0001 13.0 9750 0.9176 0.9101
0.0001 14.0 10500 0.9531 0.8985
0.0002 15.0 11250 0.9250 0.9035
0.0418 16.0 12000 0.9389 0.9085
0.0 17.0 12750 0.9725 0.9035
0.0001 18.0 13500 0.9072 0.9101
0.0173 19.0 14250 0.9123 0.9151
0.0042 20.0 15000 0.9275 0.9068
0.0 21.0 15750 0.9111 0.9101
0.0243 22.0 16500 0.9348 0.9101
0.0002 23.0 17250 1.0125 0.9052
0.0002 24.0 18000 0.8943 0.9101
0.0 25.0 18750 1.0215 0.9035
0.0001 26.0 19500 0.9907 0.9085
0.0358 27.0 20250 0.9413 0.9101
0.0003 28.0 21000 0.8860 0.9201
0.0 29.0 21750 0.9273 0.9218
0.0 30.0 22500 0.9583 0.9068
0.0 31.0 23250 0.9280 0.9218
0.0 32.0 24000 0.9420 0.9168
0.0 33.0 24750 0.9244 0.9185
0.0 34.0 25500 0.9598 0.9085
0.0 35.0 26250 0.9576 0.9101
0.0 36.0 27000 0.9574 0.9101
0.0013 37.0 27750 0.9671 0.9101
0.0 38.0 28500 0.9627 0.9101
0.0 39.0 29250 0.9639 0.9118
0.0001 40.0 30000 0.9418 0.9118
0.0003 41.0 30750 0.9216 0.9135
0.0 42.0 31500 0.9226 0.9185
0.0 43.0 32250 0.9076 0.9218
0.0 44.0 33000 0.9133 0.9151
0.0006 45.0 33750 0.9164 0.9151
0.0 46.0 34500 0.9118 0.9168
0.0 47.0 35250 0.9173 0.9151
0.0 48.0 36000 0.9178 0.9101
0.0 49.0 36750 0.9196 0.9135
0.0 50.0 37500 0.9196 0.9151

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hkivancoral/smids_10x_beit_large_adamax_00001_fold2

Finetuned
(42)
this model

Evaluation results