hkivancoral's picture
End of training
6380271
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_sgd_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4444444444444444

hushem_5x_deit_small_sgd_001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3629
  • Accuracy: 0.4444

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4659 1.0 27 1.4409 0.2889
1.3866 2.0 54 1.4026 0.3556
1.3486 3.0 81 1.3816 0.3333
1.3477 4.0 108 1.3676 0.3111
1.2816 5.0 135 1.3557 0.3333
1.2558 6.0 162 1.3444 0.3556
1.2259 7.0 189 1.3343 0.3556
1.2042 8.0 216 1.3245 0.3556
1.1683 9.0 243 1.3158 0.4
1.1515 10.0 270 1.3086 0.4222
1.1156 11.0 297 1.3037 0.4222
1.1061 12.0 324 1.2999 0.4444
1.0903 13.0 351 1.3002 0.4444
1.0661 14.0 378 1.3028 0.4444
1.0598 15.0 405 1.3085 0.4444
1.0378 16.0 432 1.3130 0.4444
1.0191 17.0 459 1.3179 0.4444
0.9884 18.0 486 1.3238 0.4444
0.9629 19.0 513 1.3282 0.4444
0.9575 20.0 540 1.3319 0.4222
0.9397 21.0 567 1.3353 0.4222
0.9296 22.0 594 1.3380 0.4222
0.9149 23.0 621 1.3408 0.4222
0.9023 24.0 648 1.3446 0.4222
0.8747 25.0 675 1.3454 0.4667
0.9184 26.0 702 1.3472 0.4444
0.8454 27.0 729 1.3479 0.4444
0.8505 28.0 756 1.3510 0.4444
0.8567 29.0 783 1.3517 0.4444
0.8854 30.0 810 1.3544 0.4667
0.834 31.0 837 1.3546 0.4444
0.8438 32.0 864 1.3560 0.4444
0.8236 33.0 891 1.3564 0.4444
0.8208 34.0 918 1.3570 0.4444
0.8066 35.0 945 1.3589 0.4444
0.8073 36.0 972 1.3591 0.4444
0.8089 37.0 999 1.3595 0.4444
0.777 38.0 1026 1.3599 0.4444
0.7828 39.0 1053 1.3610 0.4444
0.787 40.0 1080 1.3609 0.4444
0.8016 41.0 1107 1.3612 0.4444
0.7822 42.0 1134 1.3619 0.4444
0.8105 43.0 1161 1.3621 0.4444
0.7646 44.0 1188 1.3622 0.4444
0.7928 45.0 1215 1.3624 0.4444
0.7714 46.0 1242 1.3625 0.4444
0.7741 47.0 1269 1.3627 0.4444
0.7688 48.0 1296 1.3629 0.4444
0.834 49.0 1323 1.3629 0.4444
0.7751 50.0 1350 1.3629 0.4444

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0