hkivancoral's picture
End of training
e029920
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_beit_base_sgd_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7142857142857143

hushem_5x_beit_base_sgd_001_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9066
  • Accuracy: 0.7143

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.529 1.0 28 1.4303 0.2857
1.4725 2.0 56 1.3788 0.2857
1.3888 3.0 84 1.3402 0.3571
1.357 4.0 112 1.3238 0.3333
1.2619 5.0 140 1.3109 0.3571
1.2354 6.0 168 1.2864 0.4286
1.2209 7.0 196 1.2694 0.4524
1.2033 8.0 224 1.2439 0.4524
1.1737 9.0 252 1.2291 0.4762
1.1593 10.0 280 1.2131 0.4762
1.1467 11.0 308 1.1977 0.4762
1.1374 12.0 336 1.1819 0.5
1.1253 13.0 364 1.1622 0.4762
1.1026 14.0 392 1.1551 0.4762
1.0893 15.0 420 1.1365 0.4762
1.0476 16.0 448 1.1177 0.4762
1.0789 17.0 476 1.1065 0.4762
1.0455 18.0 504 1.0907 0.4762
1.0028 19.0 532 1.0816 0.4762
1.004 20.0 560 1.0638 0.4762
0.967 21.0 588 1.0579 0.5
0.9933 22.0 616 1.0403 0.5
0.9551 23.0 644 1.0323 0.5714
0.9924 24.0 672 1.0183 0.5952
0.9236 25.0 700 1.0095 0.6190
0.9232 26.0 728 0.9951 0.6190
0.9574 27.0 756 1.0017 0.6190
0.9076 28.0 784 0.9866 0.6429
0.9034 29.0 812 0.9711 0.6429
0.8865 30.0 840 0.9696 0.6667
0.9168 31.0 868 0.9618 0.6667
0.8917 32.0 896 0.9532 0.6905
0.901 33.0 924 0.9560 0.6667
0.8911 34.0 952 0.9475 0.6667
0.9166 35.0 980 0.9435 0.7143
0.9177 36.0 1008 0.9323 0.7143
0.8498 37.0 1036 0.9279 0.7143
0.8848 38.0 1064 0.9240 0.7143
0.8498 39.0 1092 0.9206 0.7143
0.8193 40.0 1120 0.9192 0.7143
0.8443 41.0 1148 0.9102 0.7143
0.8576 42.0 1176 0.9108 0.7143
0.8916 43.0 1204 0.9094 0.7143
0.8299 44.0 1232 0.9082 0.7143
0.8298 45.0 1260 0.9062 0.7143
0.8683 46.0 1288 0.9063 0.7143
0.8298 47.0 1316 0.9065 0.7143
0.8412 48.0 1344 0.9065 0.7143
0.8333 49.0 1372 0.9066 0.7143
0.8603 50.0 1400 0.9066 0.7143

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0