hkivancoral's picture
End of training
7534239
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_beit_base_adamax_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7380952380952381

hushem_5x_beit_base_adamax_001_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1895
  • Accuracy: 0.7381

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.398 1.0 28 1.3161 0.2619
1.3348 2.0 56 1.1486 0.5
1.2598 3.0 84 1.2723 0.4762
1.0258 4.0 112 2.5380 0.3571
0.9514 5.0 140 0.7752 0.6667
0.9022 6.0 168 0.7061 0.7381
0.894 7.0 196 0.9563 0.6190
0.9803 8.0 224 0.6994 0.7381
0.8819 9.0 252 0.6742 0.7619
0.8414 10.0 280 0.7881 0.6667
0.8005 11.0 308 0.9825 0.7143
0.8103 12.0 336 0.6127 0.7619
0.8302 13.0 364 0.8926 0.7143
0.7477 14.0 392 0.8951 0.6190
0.7772 15.0 420 0.6142 0.7619
0.6718 16.0 448 0.6386 0.7619
0.6971 17.0 476 0.8030 0.6429
0.6705 18.0 504 0.8028 0.6667
0.6156 19.0 532 0.8667 0.6429
0.4804 20.0 560 0.6053 0.7381
0.3939 21.0 588 0.8598 0.7381
0.485 22.0 616 0.7061 0.7381
0.4778 23.0 644 1.0522 0.6190
0.4222 24.0 672 0.8683 0.7381
0.2892 25.0 700 1.0772 0.7143
0.3633 26.0 728 0.8242 0.7857
0.4528 27.0 756 1.4370 0.6667
0.2621 28.0 784 1.0095 0.8095
0.1921 29.0 812 1.3782 0.7143
0.1811 30.0 840 1.8693 0.7143
0.1481 31.0 868 1.8742 0.7619
0.1394 32.0 896 1.7130 0.7143
0.0623 33.0 924 1.6326 0.7619
0.1726 34.0 952 1.5273 0.7381
0.1641 35.0 980 1.3046 0.8333
0.0573 36.0 1008 2.1424 0.6667
0.0574 37.0 1036 2.1687 0.7143
0.0558 38.0 1064 1.6907 0.7619
0.0165 39.0 1092 2.0112 0.7619
0.052 40.0 1120 1.7998 0.7619
0.0524 41.0 1148 2.3373 0.7143
0.0976 42.0 1176 2.2060 0.7381
0.0064 43.0 1204 2.2711 0.7619
0.0205 44.0 1232 2.4091 0.7619
0.0254 45.0 1260 2.3470 0.7381
0.0473 46.0 1288 2.3652 0.7381
0.0464 47.0 1316 2.2959 0.7381
0.0006 48.0 1344 2.1947 0.7381
0.0143 49.0 1372 2.1895 0.7381
0.0223 50.0 1400 2.1895 0.7381

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0