metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_beit_base_adamax_001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7380952380952381
hushem_5x_beit_base_adamax_001_fold4
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 2.1895
- Accuracy: 0.7381
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.398 | 1.0 | 28 | 1.3161 | 0.2619 |
1.3348 | 2.0 | 56 | 1.1486 | 0.5 |
1.2598 | 3.0 | 84 | 1.2723 | 0.4762 |
1.0258 | 4.0 | 112 | 2.5380 | 0.3571 |
0.9514 | 5.0 | 140 | 0.7752 | 0.6667 |
0.9022 | 6.0 | 168 | 0.7061 | 0.7381 |
0.894 | 7.0 | 196 | 0.9563 | 0.6190 |
0.9803 | 8.0 | 224 | 0.6994 | 0.7381 |
0.8819 | 9.0 | 252 | 0.6742 | 0.7619 |
0.8414 | 10.0 | 280 | 0.7881 | 0.6667 |
0.8005 | 11.0 | 308 | 0.9825 | 0.7143 |
0.8103 | 12.0 | 336 | 0.6127 | 0.7619 |
0.8302 | 13.0 | 364 | 0.8926 | 0.7143 |
0.7477 | 14.0 | 392 | 0.8951 | 0.6190 |
0.7772 | 15.0 | 420 | 0.6142 | 0.7619 |
0.6718 | 16.0 | 448 | 0.6386 | 0.7619 |
0.6971 | 17.0 | 476 | 0.8030 | 0.6429 |
0.6705 | 18.0 | 504 | 0.8028 | 0.6667 |
0.6156 | 19.0 | 532 | 0.8667 | 0.6429 |
0.4804 | 20.0 | 560 | 0.6053 | 0.7381 |
0.3939 | 21.0 | 588 | 0.8598 | 0.7381 |
0.485 | 22.0 | 616 | 0.7061 | 0.7381 |
0.4778 | 23.0 | 644 | 1.0522 | 0.6190 |
0.4222 | 24.0 | 672 | 0.8683 | 0.7381 |
0.2892 | 25.0 | 700 | 1.0772 | 0.7143 |
0.3633 | 26.0 | 728 | 0.8242 | 0.7857 |
0.4528 | 27.0 | 756 | 1.4370 | 0.6667 |
0.2621 | 28.0 | 784 | 1.0095 | 0.8095 |
0.1921 | 29.0 | 812 | 1.3782 | 0.7143 |
0.1811 | 30.0 | 840 | 1.8693 | 0.7143 |
0.1481 | 31.0 | 868 | 1.8742 | 0.7619 |
0.1394 | 32.0 | 896 | 1.7130 | 0.7143 |
0.0623 | 33.0 | 924 | 1.6326 | 0.7619 |
0.1726 | 34.0 | 952 | 1.5273 | 0.7381 |
0.1641 | 35.0 | 980 | 1.3046 | 0.8333 |
0.0573 | 36.0 | 1008 | 2.1424 | 0.6667 |
0.0574 | 37.0 | 1036 | 2.1687 | 0.7143 |
0.0558 | 38.0 | 1064 | 1.6907 | 0.7619 |
0.0165 | 39.0 | 1092 | 2.0112 | 0.7619 |
0.052 | 40.0 | 1120 | 1.7998 | 0.7619 |
0.0524 | 41.0 | 1148 | 2.3373 | 0.7143 |
0.0976 | 42.0 | 1176 | 2.2060 | 0.7381 |
0.0064 | 43.0 | 1204 | 2.2711 | 0.7619 |
0.0205 | 44.0 | 1232 | 2.4091 | 0.7619 |
0.0254 | 45.0 | 1260 | 2.3470 | 0.7381 |
0.0473 | 46.0 | 1288 | 2.3652 | 0.7381 |
0.0464 | 47.0 | 1316 | 2.2959 | 0.7381 |
0.0006 | 48.0 | 1344 | 2.1947 | 0.7381 |
0.0143 | 49.0 | 1372 | 2.1895 | 0.7381 |
0.0223 | 50.0 | 1400 | 2.1895 | 0.7381 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0