hkivancoral's picture
End of training
89d62c4
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_beit_base_adamax_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8292682926829268

hushem_5x_beit_base_adamax_0001_fold5

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9920
  • Accuracy: 0.8293

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.641 1.0 28 0.5863 0.7317
0.1363 2.0 56 0.5085 0.8049
0.0403 3.0 84 0.8067 0.8049
0.0158 4.0 112 0.6196 0.7805
0.0024 5.0 140 0.5093 0.9024
0.0017 6.0 168 0.8498 0.8293
0.0016 7.0 196 0.8351 0.8537
0.0006 8.0 224 0.8986 0.8293
0.0004 9.0 252 0.5488 0.8780
0.0018 10.0 280 0.6108 0.8780
0.0004 11.0 308 0.7112 0.8537
0.0001 12.0 336 0.7806 0.8537
0.0001 13.0 364 0.8893 0.8780
0.0001 14.0 392 0.9596 0.8293
0.005 15.0 420 0.6813 0.9024
0.0001 16.0 448 0.9535 0.7561
0.0002 17.0 476 0.6993 0.8537
0.0001 18.0 504 0.6415 0.8537
0.0001 19.0 532 0.6851 0.8293
0.0 20.0 560 0.6721 0.8537
0.0001 21.0 588 0.6658 0.8537
0.0001 22.0 616 0.6422 0.8537
0.0 23.0 644 0.6457 0.8537
0.0001 24.0 672 0.6659 0.8537
0.0001 25.0 700 0.6825 0.8537
0.0 26.0 728 0.7334 0.8293
0.0 27.0 756 0.7447 0.8293
0.0 28.0 784 0.7524 0.8293
0.0001 29.0 812 0.7681 0.8293
0.0 30.0 840 0.7829 0.8293
0.0001 31.0 868 0.9622 0.8293
0.0002 32.0 896 1.1091 0.8293
0.0 33.0 924 1.0337 0.8293
0.0 34.0 952 0.9846 0.8293
0.0 35.0 980 0.9615 0.8293
0.0001 36.0 1008 0.9612 0.8293
0.0001 37.0 1036 0.9494 0.8293
0.0001 38.0 1064 0.9364 0.8293
0.0 39.0 1092 0.9014 0.8293
0.0002 40.0 1120 0.8887 0.8293
0.0001 41.0 1148 0.9321 0.8293
0.0 42.0 1176 0.9557 0.8293
0.0 43.0 1204 1.0018 0.8293
0.0 44.0 1232 1.0026 0.8293
0.0006 45.0 1260 0.9880 0.8293
0.0001 46.0 1288 0.9929 0.8293
0.0001 47.0 1316 0.9924 0.8293
0.0 48.0 1344 0.9920 0.8293
0.0 49.0 1372 0.9920 0.8293
0.0 50.0 1400 0.9920 0.8293

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0