hkivancoral's picture
End of training
40d0b5e
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_sgd_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.24390243902439024

hushem_1x_deit_tiny_sgd_0001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5523
  • Accuracy: 0.2439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.7547 0.2439
1.7078 2.0 12 1.7422 0.2439
1.7078 3.0 18 1.7303 0.2439
1.6827 4.0 24 1.7187 0.2439
1.6676 5.0 30 1.7076 0.2439
1.6676 6.0 36 1.6970 0.2439
1.6669 7.0 42 1.6882 0.2439
1.6669 8.0 48 1.6793 0.2439
1.5935 9.0 54 1.6701 0.2439
1.6316 10.0 60 1.6617 0.2439
1.6316 11.0 66 1.6538 0.2439
1.6324 12.0 72 1.6460 0.2439
1.6324 13.0 78 1.6387 0.2439
1.5842 14.0 84 1.6318 0.2439
1.5897 15.0 90 1.6256 0.2439
1.5897 16.0 96 1.6199 0.2439
1.5943 17.0 102 1.6144 0.2439
1.5943 18.0 108 1.6092 0.2195
1.5586 19.0 114 1.6040 0.2195
1.5924 20.0 120 1.5990 0.2195
1.5924 21.0 126 1.5945 0.2195
1.5676 22.0 132 1.5902 0.2195
1.5676 23.0 138 1.5862 0.2195
1.5352 24.0 144 1.5823 0.2195
1.5842 25.0 150 1.5786 0.2195
1.5842 26.0 156 1.5752 0.2195
1.5461 27.0 162 1.5723 0.2195
1.5461 28.0 168 1.5695 0.2195
1.551 29.0 174 1.5671 0.2439
1.5549 30.0 180 1.5649 0.2439
1.5549 31.0 186 1.5628 0.2439
1.5532 32.0 192 1.5610 0.2439
1.5532 33.0 198 1.5594 0.2439
1.5006 34.0 204 1.5578 0.2439
1.5134 35.0 210 1.5565 0.2439
1.5134 36.0 216 1.5553 0.2439
1.5386 37.0 222 1.5543 0.2439
1.5386 38.0 228 1.5536 0.2439
1.5372 39.0 234 1.5530 0.2439
1.528 40.0 240 1.5526 0.2439
1.528 41.0 246 1.5524 0.2439
1.5555 42.0 252 1.5523 0.2439
1.5555 43.0 258 1.5523 0.2439
1.509 44.0 264 1.5523 0.2439
1.5379 45.0 270 1.5523 0.2439
1.5379 46.0 276 1.5523 0.2439
1.5588 47.0 282 1.5523 0.2439
1.5588 48.0 288 1.5523 0.2439
1.509 49.0 294 1.5523 0.2439
1.5414 50.0 300 1.5523 0.2439

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1