hkivancoral's picture
End of training
0988893
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_rms_lr00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6888888888888889

hushem_1x_deit_tiny_rms_lr00001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1351
  • Accuracy: 0.6889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.2498 0.4444
1.3042 2.0 12 1.0549 0.6222
1.3042 3.0 18 1.0499 0.6444
0.513 4.0 24 1.0344 0.6444
0.1791 5.0 30 1.0697 0.5333
0.1791 6.0 36 1.0207 0.6889
0.0528 7.0 42 0.9620 0.6889
0.0528 8.0 48 1.0015 0.6444
0.0178 9.0 54 0.9911 0.6667
0.0068 10.0 60 1.0253 0.6667
0.0068 11.0 66 1.0141 0.6889
0.0039 12.0 72 1.0366 0.6444
0.0039 13.0 78 1.0348 0.6889
0.0028 14.0 84 1.0325 0.6889
0.0023 15.0 90 1.0525 0.6889
0.0023 16.0 96 1.0555 0.6889
0.0019 17.0 102 1.0728 0.6667
0.0019 18.0 108 1.0773 0.6889
0.0016 19.0 114 1.0791 0.6667
0.0014 20.0 120 1.0906 0.6667
0.0014 21.0 126 1.0852 0.6889
0.0013 22.0 132 1.0885 0.7111
0.0013 23.0 138 1.1009 0.6889
0.0012 24.0 144 1.1078 0.6889
0.001 25.0 150 1.1057 0.7111
0.001 26.0 156 1.1088 0.7111
0.001 27.0 162 1.1100 0.7111
0.001 28.0 168 1.1174 0.6889
0.0009 29.0 174 1.1173 0.6889
0.0009 30.0 180 1.1217 0.6889
0.0009 31.0 186 1.1218 0.6889
0.0008 32.0 192 1.1230 0.6889
0.0008 33.0 198 1.1264 0.6889
0.0008 34.0 204 1.1266 0.6889
0.0008 35.0 210 1.1281 0.6889
0.0008 36.0 216 1.1299 0.6889
0.0007 37.0 222 1.1316 0.6889
0.0007 38.0 228 1.1339 0.6889
0.0007 39.0 234 1.1344 0.6889
0.0007 40.0 240 1.1349 0.6889
0.0007 41.0 246 1.1350 0.6889
0.0007 42.0 252 1.1351 0.6889
0.0007 43.0 258 1.1351 0.6889
0.0007 44.0 264 1.1351 0.6889
0.0007 45.0 270 1.1351 0.6889
0.0007 46.0 276 1.1351 0.6889
0.0007 47.0 282 1.1351 0.6889
0.0007 48.0 288 1.1351 0.6889
0.0007 49.0 294 1.1351 0.6889
0.0007 50.0 300 1.1351 0.6889

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1