hkivancoral's picture
End of training
c7a0fab
|
raw
history blame
4.82 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.627906976744186

hushem_1x_deit_tiny_adamax_001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8954
  • Accuracy: 0.6279

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.3703 0.2558
1.9279 2.0 12 1.2966 0.3953
1.9279 3.0 18 1.5490 0.3256
1.3451 4.0 24 1.3082 0.4186
1.2763 5.0 30 1.4000 0.3023
1.2763 6.0 36 1.3783 0.3488
1.1541 7.0 42 1.2878 0.3953
1.1541 8.0 48 1.2528 0.4651
1.0831 9.0 54 1.2761 0.4884
1.0032 10.0 60 0.9439 0.6279
1.0032 11.0 66 1.9597 0.3256
1.0649 12.0 72 1.3501 0.4651
1.0649 13.0 78 1.2845 0.6279
0.8485 14.0 84 1.2102 0.5814
0.7758 15.0 90 1.5993 0.4651
0.7758 16.0 96 1.1744 0.6279
0.5906 17.0 102 1.9493 0.4884
0.5906 18.0 108 1.3370 0.5581
0.5433 19.0 114 1.8704 0.5814
0.4053 20.0 120 2.3449 0.6047
0.4053 21.0 126 2.8071 0.4651
0.6321 22.0 132 1.8750 0.5814
0.6321 23.0 138 1.9591 0.5814
0.2883 24.0 144 2.0517 0.6744
0.2248 25.0 150 2.2716 0.5581
0.2248 26.0 156 2.5758 0.5581
0.0908 27.0 162 2.4971 0.5814
0.0908 28.0 168 2.2990 0.6512
0.0607 29.0 174 2.2806 0.6977
0.0385 30.0 180 2.4187 0.6279
0.0385 31.0 186 2.4113 0.6744
0.0085 32.0 192 2.4630 0.6512
0.0085 33.0 198 2.7214 0.6279
0.004 34.0 204 2.8415 0.6047
0.0007 35.0 210 2.8858 0.6047
0.0007 36.0 216 2.8956 0.6279
0.0005 37.0 222 2.8935 0.6279
0.0005 38.0 228 2.8908 0.6279
0.0004 39.0 234 2.8922 0.6279
0.0003 40.0 240 2.8936 0.6279
0.0003 41.0 246 2.8951 0.6279
0.0003 42.0 252 2.8954 0.6279
0.0003 43.0 258 2.8954 0.6279
0.0003 44.0 264 2.8954 0.6279
0.0003 45.0 270 2.8954 0.6279
0.0003 46.0 276 2.8954 0.6279
0.0003 47.0 282 2.8954 0.6279
0.0003 48.0 288 2.8954 0.6279
0.0003 49.0 294 2.8954 0.6279
0.0003 50.0 300 2.8954 0.6279

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1