metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_beit_base_sgd_0001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.2682926829268293
hushem_1x_beit_base_sgd_0001_fold5
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.5504
- Accuracy: 0.2683
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.6302 | 0.2439 |
1.5748 | 2.0 | 12 | 1.6252 | 0.2439 |
1.5748 | 3.0 | 18 | 1.6204 | 0.2439 |
1.5763 | 4.0 | 24 | 1.6160 | 0.2439 |
1.56 | 5.0 | 30 | 1.6118 | 0.2439 |
1.56 | 6.0 | 36 | 1.6079 | 0.2439 |
1.5722 | 7.0 | 42 | 1.6043 | 0.2439 |
1.5722 | 8.0 | 48 | 1.6006 | 0.2439 |
1.5053 | 9.0 | 54 | 1.5970 | 0.2439 |
1.5617 | 10.0 | 60 | 1.5937 | 0.2439 |
1.5617 | 11.0 | 66 | 1.5908 | 0.2439 |
1.5101 | 12.0 | 72 | 1.5876 | 0.2439 |
1.5101 | 13.0 | 78 | 1.5848 | 0.2683 |
1.5266 | 14.0 | 84 | 1.5820 | 0.2683 |
1.4925 | 15.0 | 90 | 1.5796 | 0.2683 |
1.4925 | 16.0 | 96 | 1.5771 | 0.2683 |
1.5202 | 17.0 | 102 | 1.5750 | 0.2683 |
1.5202 | 18.0 | 108 | 1.5729 | 0.2683 |
1.5168 | 19.0 | 114 | 1.5711 | 0.2683 |
1.5066 | 20.0 | 120 | 1.5691 | 0.2683 |
1.5066 | 21.0 | 126 | 1.5674 | 0.2683 |
1.508 | 22.0 | 132 | 1.5658 | 0.2683 |
1.508 | 23.0 | 138 | 1.5642 | 0.2683 |
1.4868 | 24.0 | 144 | 1.5626 | 0.2683 |
1.5018 | 25.0 | 150 | 1.5612 | 0.2683 |
1.5018 | 26.0 | 156 | 1.5598 | 0.2683 |
1.5061 | 27.0 | 162 | 1.5585 | 0.2683 |
1.5061 | 28.0 | 168 | 1.5574 | 0.2683 |
1.4922 | 29.0 | 174 | 1.5565 | 0.2683 |
1.5131 | 30.0 | 180 | 1.5557 | 0.2683 |
1.5131 | 31.0 | 186 | 1.5547 | 0.2683 |
1.5054 | 32.0 | 192 | 1.5540 | 0.2683 |
1.5054 | 33.0 | 198 | 1.5533 | 0.2683 |
1.4665 | 34.0 | 204 | 1.5527 | 0.2683 |
1.5093 | 35.0 | 210 | 1.5521 | 0.2683 |
1.5093 | 36.0 | 216 | 1.5516 | 0.2683 |
1.5042 | 37.0 | 222 | 1.5513 | 0.2683 |
1.5042 | 38.0 | 228 | 1.5509 | 0.2683 |
1.4952 | 39.0 | 234 | 1.5507 | 0.2683 |
1.4728 | 40.0 | 240 | 1.5505 | 0.2683 |
1.4728 | 41.0 | 246 | 1.5504 | 0.2683 |
1.4831 | 42.0 | 252 | 1.5504 | 0.2683 |
1.4831 | 43.0 | 258 | 1.5504 | 0.2683 |
1.4991 | 44.0 | 264 | 1.5504 | 0.2683 |
1.4929 | 45.0 | 270 | 1.5504 | 0.2683 |
1.4929 | 46.0 | 276 | 1.5504 | 0.2683 |
1.5005 | 47.0 | 282 | 1.5504 | 0.2683 |
1.5005 | 48.0 | 288 | 1.5504 | 0.2683 |
1.4392 | 49.0 | 294 | 1.5504 | 0.2683 |
1.4753 | 50.0 | 300 | 1.5504 | 0.2683 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0