hkivancoral's picture
End of training
e9e43ec
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_beit_base_sgd_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.2682926829268293

hushem_1x_beit_base_sgd_0001_fold5

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5504
  • Accuracy: 0.2683

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.6302 0.2439
1.5748 2.0 12 1.6252 0.2439
1.5748 3.0 18 1.6204 0.2439
1.5763 4.0 24 1.6160 0.2439
1.56 5.0 30 1.6118 0.2439
1.56 6.0 36 1.6079 0.2439
1.5722 7.0 42 1.6043 0.2439
1.5722 8.0 48 1.6006 0.2439
1.5053 9.0 54 1.5970 0.2439
1.5617 10.0 60 1.5937 0.2439
1.5617 11.0 66 1.5908 0.2439
1.5101 12.0 72 1.5876 0.2439
1.5101 13.0 78 1.5848 0.2683
1.5266 14.0 84 1.5820 0.2683
1.4925 15.0 90 1.5796 0.2683
1.4925 16.0 96 1.5771 0.2683
1.5202 17.0 102 1.5750 0.2683
1.5202 18.0 108 1.5729 0.2683
1.5168 19.0 114 1.5711 0.2683
1.5066 20.0 120 1.5691 0.2683
1.5066 21.0 126 1.5674 0.2683
1.508 22.0 132 1.5658 0.2683
1.508 23.0 138 1.5642 0.2683
1.4868 24.0 144 1.5626 0.2683
1.5018 25.0 150 1.5612 0.2683
1.5018 26.0 156 1.5598 0.2683
1.5061 27.0 162 1.5585 0.2683
1.5061 28.0 168 1.5574 0.2683
1.4922 29.0 174 1.5565 0.2683
1.5131 30.0 180 1.5557 0.2683
1.5131 31.0 186 1.5547 0.2683
1.5054 32.0 192 1.5540 0.2683
1.5054 33.0 198 1.5533 0.2683
1.4665 34.0 204 1.5527 0.2683
1.5093 35.0 210 1.5521 0.2683
1.5093 36.0 216 1.5516 0.2683
1.5042 37.0 222 1.5513 0.2683
1.5042 38.0 228 1.5509 0.2683
1.4952 39.0 234 1.5507 0.2683
1.4728 40.0 240 1.5505 0.2683
1.4728 41.0 246 1.5504 0.2683
1.4831 42.0 252 1.5504 0.2683
1.4831 43.0 258 1.5504 0.2683
1.4991 44.0 264 1.5504 0.2683
1.4929 45.0 270 1.5504 0.2683
1.4929 46.0 276 1.5504 0.2683
1.5005 47.0 282 1.5504 0.2683
1.5005 48.0 288 1.5504 0.2683
1.4392 49.0 294 1.5504 0.2683
1.4753 50.0 300 1.5504 0.2683

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0