metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_beit_base_rms_0001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.4222222222222222
hushem_1x_beit_base_rms_0001_fold1
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.7892
- Accuracy: 0.4222
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.3881 | 0.2444 |
1.983 | 2.0 | 12 | 1.4040 | 0.2444 |
1.983 | 3.0 | 18 | 1.4052 | 0.2667 |
1.41 | 4.0 | 24 | 1.3851 | 0.2444 |
1.3993 | 5.0 | 30 | 1.3596 | 0.2667 |
1.3993 | 6.0 | 36 | 1.5010 | 0.2444 |
1.3135 | 7.0 | 42 | 1.4385 | 0.3778 |
1.3135 | 8.0 | 48 | 1.3273 | 0.2222 |
1.2878 | 9.0 | 54 | 1.7515 | 0.2444 |
1.2036 | 10.0 | 60 | 1.4739 | 0.3111 |
1.2036 | 11.0 | 66 | 1.4793 | 0.4444 |
1.1544 | 12.0 | 72 | 1.6976 | 0.4444 |
1.1544 | 13.0 | 78 | 1.5051 | 0.3778 |
1.1611 | 14.0 | 84 | 2.0887 | 0.2444 |
1.0944 | 15.0 | 90 | 1.7507 | 0.3778 |
1.0944 | 16.0 | 96 | 1.5983 | 0.4 |
1.1053 | 17.0 | 102 | 1.5239 | 0.3333 |
1.1053 | 18.0 | 108 | 1.7239 | 0.3333 |
0.9531 | 19.0 | 114 | 1.7796 | 0.3778 |
0.9208 | 20.0 | 120 | 1.7000 | 0.4 |
0.9208 | 21.0 | 126 | 1.5682 | 0.3556 |
0.9119 | 22.0 | 132 | 1.6947 | 0.2889 |
0.9119 | 23.0 | 138 | 1.9309 | 0.3111 |
0.8438 | 24.0 | 144 | 1.7778 | 0.4 |
0.7982 | 25.0 | 150 | 1.3358 | 0.4889 |
0.7982 | 26.0 | 156 | 1.8930 | 0.3778 |
0.7528 | 27.0 | 162 | 1.5978 | 0.4444 |
0.7528 | 28.0 | 168 | 1.7048 | 0.4 |
0.7372 | 29.0 | 174 | 1.4976 | 0.4 |
0.6872 | 30.0 | 180 | 1.5193 | 0.4222 |
0.6872 | 31.0 | 186 | 1.5712 | 0.3778 |
0.6257 | 32.0 | 192 | 1.6492 | 0.4 |
0.6257 | 33.0 | 198 | 1.6572 | 0.4444 |
0.6115 | 34.0 | 204 | 1.7617 | 0.4222 |
0.502 | 35.0 | 210 | 1.7836 | 0.4 |
0.502 | 36.0 | 216 | 1.7245 | 0.4222 |
0.5351 | 37.0 | 222 | 1.8523 | 0.3778 |
0.5351 | 38.0 | 228 | 1.8752 | 0.3778 |
0.4239 | 39.0 | 234 | 1.7739 | 0.4222 |
0.4397 | 40.0 | 240 | 1.8121 | 0.4 |
0.4397 | 41.0 | 246 | 1.7942 | 0.4222 |
0.3888 | 42.0 | 252 | 1.7892 | 0.4222 |
0.3888 | 43.0 | 258 | 1.7892 | 0.4222 |
0.3836 | 44.0 | 264 | 1.7892 | 0.4222 |
0.3564 | 45.0 | 270 | 1.7892 | 0.4222 |
0.3564 | 46.0 | 276 | 1.7892 | 0.4222 |
0.3801 | 47.0 | 282 | 1.7892 | 0.4222 |
0.3801 | 48.0 | 288 | 1.7892 | 0.4222 |
0.316 | 49.0 | 294 | 1.7892 | 0.4222 |
0.3933 | 50.0 | 300 | 1.7892 | 0.4222 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0