hkivancoral's picture
End of training
df173f6
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_beit_base_rms_0001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4222222222222222

hushem_1x_beit_base_rms_0001_fold1

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7892
  • Accuracy: 0.4222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.3881 0.2444
1.983 2.0 12 1.4040 0.2444
1.983 3.0 18 1.4052 0.2667
1.41 4.0 24 1.3851 0.2444
1.3993 5.0 30 1.3596 0.2667
1.3993 6.0 36 1.5010 0.2444
1.3135 7.0 42 1.4385 0.3778
1.3135 8.0 48 1.3273 0.2222
1.2878 9.0 54 1.7515 0.2444
1.2036 10.0 60 1.4739 0.3111
1.2036 11.0 66 1.4793 0.4444
1.1544 12.0 72 1.6976 0.4444
1.1544 13.0 78 1.5051 0.3778
1.1611 14.0 84 2.0887 0.2444
1.0944 15.0 90 1.7507 0.3778
1.0944 16.0 96 1.5983 0.4
1.1053 17.0 102 1.5239 0.3333
1.1053 18.0 108 1.7239 0.3333
0.9531 19.0 114 1.7796 0.3778
0.9208 20.0 120 1.7000 0.4
0.9208 21.0 126 1.5682 0.3556
0.9119 22.0 132 1.6947 0.2889
0.9119 23.0 138 1.9309 0.3111
0.8438 24.0 144 1.7778 0.4
0.7982 25.0 150 1.3358 0.4889
0.7982 26.0 156 1.8930 0.3778
0.7528 27.0 162 1.5978 0.4444
0.7528 28.0 168 1.7048 0.4
0.7372 29.0 174 1.4976 0.4
0.6872 30.0 180 1.5193 0.4222
0.6872 31.0 186 1.5712 0.3778
0.6257 32.0 192 1.6492 0.4
0.6257 33.0 198 1.6572 0.4444
0.6115 34.0 204 1.7617 0.4222
0.502 35.0 210 1.7836 0.4
0.502 36.0 216 1.7245 0.4222
0.5351 37.0 222 1.8523 0.3778
0.5351 38.0 228 1.8752 0.3778
0.4239 39.0 234 1.7739 0.4222
0.4397 40.0 240 1.8121 0.4
0.4397 41.0 246 1.7942 0.4222
0.3888 42.0 252 1.7892 0.4222
0.3888 43.0 258 1.7892 0.4222
0.3836 44.0 264 1.7892 0.4222
0.3564 45.0 270 1.7892 0.4222
0.3564 46.0 276 1.7892 0.4222
0.3801 47.0 282 1.7892 0.4222
0.3801 48.0 288 1.7892 0.4222
0.316 49.0 294 1.7892 0.4222
0.3933 50.0 300 1.7892 0.4222

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0