hkivancoral's picture
End of training
ced43de
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_beit_base_adamax_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8571428571428571

hushem_1x_beit_base_adamax_00001_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3525
  • Accuracy: 0.8571

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.2487 0.4524
1.3325 2.0 12 1.1186 0.5476
1.3325 3.0 18 1.0007 0.6429
0.9723 4.0 24 0.9193 0.6429
0.7474 5.0 30 0.8604 0.6429
0.7474 6.0 36 0.7650 0.7143
0.5775 7.0 42 0.6832 0.7619
0.5775 8.0 48 0.6554 0.7381
0.4415 9.0 54 0.6117 0.7381
0.3035 10.0 60 0.5783 0.7857
0.3035 11.0 66 0.5572 0.7857
0.2259 12.0 72 0.5149 0.8095
0.2259 13.0 78 0.4887 0.8571
0.1918 14.0 84 0.4779 0.8095
0.1546 15.0 90 0.4660 0.8095
0.1546 16.0 96 0.4640 0.8333
0.1177 17.0 102 0.4361 0.9048
0.1177 18.0 108 0.4152 0.8810
0.1109 19.0 114 0.4213 0.9048
0.0885 20.0 120 0.4055 0.9048
0.0885 21.0 126 0.3889 0.8810
0.0665 22.0 132 0.3826 0.8810
0.0665 23.0 138 0.3817 0.9048
0.0682 24.0 144 0.3714 0.9048
0.055 25.0 150 0.3759 0.8810
0.055 26.0 156 0.3597 0.9048
0.0545 27.0 162 0.3543 0.9048
0.0545 28.0 168 0.3635 0.8810
0.0561 29.0 174 0.3559 0.8810
0.0403 30.0 180 0.3405 0.9048
0.0403 31.0 186 0.3424 0.9048
0.048 32.0 192 0.3445 0.8810
0.048 33.0 198 0.3419 0.8810
0.0375 34.0 204 0.3424 0.8810
0.0438 35.0 210 0.3440 0.8810
0.0438 36.0 216 0.3465 0.8571
0.0357 37.0 222 0.3469 0.8571
0.0357 38.0 228 0.3472 0.8571
0.0346 39.0 234 0.3498 0.8571
0.0356 40.0 240 0.3512 0.8571
0.0356 41.0 246 0.3523 0.8571
0.042 42.0 252 0.3525 0.8571
0.042 43.0 258 0.3525 0.8571
0.033 44.0 264 0.3525 0.8571
0.0336 45.0 270 0.3525 0.8571
0.0336 46.0 276 0.3525 0.8571
0.0414 47.0 282 0.3525 0.8571
0.0414 48.0 288 0.3525 0.8571
0.0414 49.0 294 0.3525 0.8571
0.0317 50.0 300 0.3525 0.8571

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0