metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_beit_base_adamax_00001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6888888888888889
hushem_1x_beit_base_adamax_00001_fold2
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0038
- Accuracy: 0.6889
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.2765 | 0.4 |
1.3322 | 2.0 | 12 | 1.2154 | 0.4444 |
1.3322 | 3.0 | 18 | 1.1631 | 0.4889 |
0.9388 | 4.0 | 24 | 1.0966 | 0.4889 |
0.7193 | 5.0 | 30 | 1.0653 | 0.6 |
0.7193 | 6.0 | 36 | 1.0660 | 0.5556 |
0.5374 | 7.0 | 42 | 1.0203 | 0.5778 |
0.5374 | 8.0 | 48 | 1.0147 | 0.6 |
0.4187 | 9.0 | 54 | 1.0003 | 0.6222 |
0.3224 | 10.0 | 60 | 0.9783 | 0.6 |
0.3224 | 11.0 | 66 | 0.9383 | 0.6444 |
0.2464 | 12.0 | 72 | 0.9513 | 0.6444 |
0.2464 | 13.0 | 78 | 0.9808 | 0.6444 |
0.1839 | 14.0 | 84 | 0.9939 | 0.6667 |
0.1568 | 15.0 | 90 | 1.0128 | 0.6667 |
0.1568 | 16.0 | 96 | 0.9589 | 0.6889 |
0.1288 | 17.0 | 102 | 0.9172 | 0.6889 |
0.1288 | 18.0 | 108 | 0.9617 | 0.6667 |
0.1076 | 19.0 | 114 | 0.9784 | 0.6889 |
0.1101 | 20.0 | 120 | 0.9555 | 0.6889 |
0.1101 | 21.0 | 126 | 0.9639 | 0.6889 |
0.0715 | 22.0 | 132 | 1.0124 | 0.6667 |
0.0715 | 23.0 | 138 | 1.0281 | 0.6889 |
0.0643 | 24.0 | 144 | 0.9837 | 0.6889 |
0.062 | 25.0 | 150 | 0.9706 | 0.6889 |
0.062 | 26.0 | 156 | 0.9680 | 0.6889 |
0.0557 | 27.0 | 162 | 0.9640 | 0.6889 |
0.0557 | 28.0 | 168 | 0.9912 | 0.6889 |
0.0524 | 29.0 | 174 | 1.0047 | 0.7111 |
0.0432 | 30.0 | 180 | 1.0048 | 0.6889 |
0.0432 | 31.0 | 186 | 1.0092 | 0.6889 |
0.0454 | 32.0 | 192 | 1.0117 | 0.6889 |
0.0454 | 33.0 | 198 | 1.0112 | 0.6889 |
0.0405 | 34.0 | 204 | 0.9915 | 0.6889 |
0.0406 | 35.0 | 210 | 0.9689 | 0.6889 |
0.0406 | 36.0 | 216 | 0.9643 | 0.6889 |
0.0354 | 37.0 | 222 | 0.9716 | 0.6889 |
0.0354 | 38.0 | 228 | 0.9874 | 0.6889 |
0.0426 | 39.0 | 234 | 0.9950 | 0.6889 |
0.0369 | 40.0 | 240 | 0.9999 | 0.6889 |
0.0369 | 41.0 | 246 | 1.0036 | 0.6889 |
0.0338 | 42.0 | 252 | 1.0038 | 0.6889 |
0.0338 | 43.0 | 258 | 1.0038 | 0.6889 |
0.0349 | 44.0 | 264 | 1.0038 | 0.6889 |
0.0361 | 45.0 | 270 | 1.0038 | 0.6889 |
0.0361 | 46.0 | 276 | 1.0038 | 0.6889 |
0.0398 | 47.0 | 282 | 1.0038 | 0.6889 |
0.0398 | 48.0 | 288 | 1.0038 | 0.6889 |
0.0375 | 49.0 | 294 | 1.0038 | 0.6889 |
0.0265 | 50.0 | 300 | 1.0038 | 0.6889 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0