hkivancoral's picture
End of training
8fb5fd4
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_beit_base_adamax_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6888888888888889

hushem_1x_beit_base_adamax_00001_fold2

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0038
  • Accuracy: 0.6889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.2765 0.4
1.3322 2.0 12 1.2154 0.4444
1.3322 3.0 18 1.1631 0.4889
0.9388 4.0 24 1.0966 0.4889
0.7193 5.0 30 1.0653 0.6
0.7193 6.0 36 1.0660 0.5556
0.5374 7.0 42 1.0203 0.5778
0.5374 8.0 48 1.0147 0.6
0.4187 9.0 54 1.0003 0.6222
0.3224 10.0 60 0.9783 0.6
0.3224 11.0 66 0.9383 0.6444
0.2464 12.0 72 0.9513 0.6444
0.2464 13.0 78 0.9808 0.6444
0.1839 14.0 84 0.9939 0.6667
0.1568 15.0 90 1.0128 0.6667
0.1568 16.0 96 0.9589 0.6889
0.1288 17.0 102 0.9172 0.6889
0.1288 18.0 108 0.9617 0.6667
0.1076 19.0 114 0.9784 0.6889
0.1101 20.0 120 0.9555 0.6889
0.1101 21.0 126 0.9639 0.6889
0.0715 22.0 132 1.0124 0.6667
0.0715 23.0 138 1.0281 0.6889
0.0643 24.0 144 0.9837 0.6889
0.062 25.0 150 0.9706 0.6889
0.062 26.0 156 0.9680 0.6889
0.0557 27.0 162 0.9640 0.6889
0.0557 28.0 168 0.9912 0.6889
0.0524 29.0 174 1.0047 0.7111
0.0432 30.0 180 1.0048 0.6889
0.0432 31.0 186 1.0092 0.6889
0.0454 32.0 192 1.0117 0.6889
0.0454 33.0 198 1.0112 0.6889
0.0405 34.0 204 0.9915 0.6889
0.0406 35.0 210 0.9689 0.6889
0.0406 36.0 216 0.9643 0.6889
0.0354 37.0 222 0.9716 0.6889
0.0354 38.0 228 0.9874 0.6889
0.0426 39.0 234 0.9950 0.6889
0.0369 40.0 240 0.9999 0.6889
0.0369 41.0 246 1.0036 0.6889
0.0338 42.0 252 1.0038 0.6889
0.0338 43.0 258 1.0038 0.6889
0.0349 44.0 264 1.0038 0.6889
0.0361 45.0 270 1.0038 0.6889
0.0361 46.0 276 1.0038 0.6889
0.0398 47.0 282 1.0038 0.6889
0.0398 48.0 288 1.0038 0.6889
0.0375 49.0 294 1.0038 0.6889
0.0265 50.0 300 1.0038 0.6889

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0