Himanshu singh
Upload tokenizer
68c2d85 verified
metadata
language:
  - hi
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-large-v3
model-index:
  - name: whisper-small-dataset
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: hi
          split: None
          args: 'config: hi, split: test'
        metrics:
          - type: wer
            value: 48.5207100591716
            name: Wer

whisper-small-dataset

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2599
  • Wer: 48.5207

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • training_steps: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 1.6 10 0.3733 50.2959
No log 3.2 20 0.2663 52.0710
0.2997 4.8 30 0.2667 48.5207
0.2997 6.4 40 0.2599 48.5207

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2