Model save
Browse files
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b0
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: segformer-finetuned-biofilm_MRCNNv1_validation
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# segformer-finetuned-biofilm_MRCNNv1_validation
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0667
|
19 |
+
- Mean Iou: 0.4894
|
20 |
+
- Mean Accuracy: 0.9788
|
21 |
+
- Overall Accuracy: 0.9788
|
22 |
+
- Accuracy Background: 0.9788
|
23 |
+
- Accuracy Biofilm: nan
|
24 |
+
- Iou Background: 0.9788
|
25 |
+
- Iou Biofilm: 0.0
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 6e-05
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 1337
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: polynomial
|
50 |
+
- training_steps: 10000
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Biofilm | Iou Background | Iou Biofilm |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
|
56 |
+
| 0.0896 | 1.0 | 351 | 0.0405 | 0.4947 | 0.9894 | 0.9894 | 0.9894 | nan | 0.9894 | 0.0 |
|
57 |
+
| 0.0556 | 2.0 | 702 | 0.0459 | 0.4925 | 0.9849 | 0.9849 | 0.9849 | nan | 0.9849 | 0.0 |
|
58 |
+
| 0.0532 | 3.0 | 1053 | 0.0352 | 0.4931 | 0.9863 | 0.9863 | 0.9863 | nan | 0.9863 | 0.0 |
|
59 |
+
| 0.0473 | 4.0 | 1404 | 0.0318 | 0.4936 | 0.9872 | 0.9872 | 0.9872 | nan | 0.9872 | 0.0 |
|
60 |
+
| 0.0387 | 5.0 | 1755 | 0.0318 | 0.4928 | 0.9857 | 0.9857 | 0.9857 | nan | 0.9857 | 0.0 |
|
61 |
+
| 0.0388 | 6.0 | 2106 | 0.0394 | 0.4909 | 0.9817 | 0.9817 | 0.9817 | nan | 0.9817 | 0.0 |
|
62 |
+
| 0.0344 | 7.0 | 2457 | 0.0431 | 0.4906 | 0.9811 | 0.9811 | 0.9811 | nan | 0.9811 | 0.0 |
|
63 |
+
| 0.0409 | 8.0 | 2808 | 0.0347 | 0.4922 | 0.9844 | 0.9844 | 0.9844 | nan | 0.9844 | 0.0 |
|
64 |
+
| 0.0322 | 9.0 | 3159 | 0.0415 | 0.4910 | 0.9819 | 0.9819 | 0.9819 | nan | 0.9819 | 0.0 |
|
65 |
+
| 0.0331 | 10.0 | 3510 | 0.0558 | 0.4884 | 0.9767 | 0.9767 | 0.9767 | nan | 0.9767 | 0.0 |
|
66 |
+
| 0.0337 | 11.0 | 3861 | 0.0422 | 0.4923 | 0.9847 | 0.9847 | 0.9847 | nan | 0.9847 | 0.0 |
|
67 |
+
| 0.0357 | 12.0 | 4212 | 0.0421 | 0.4908 | 0.9816 | 0.9816 | 0.9816 | nan | 0.9816 | 0.0 |
|
68 |
+
| 0.0306 | 13.0 | 4563 | 0.0398 | 0.4913 | 0.9827 | 0.9827 | 0.9827 | nan | 0.9827 | 0.0 |
|
69 |
+
| 0.0324 | 14.0 | 4914 | 0.0488 | 0.4905 | 0.9810 | 0.9810 | 0.9810 | nan | 0.9810 | 0.0 |
|
70 |
+
| 0.0293 | 15.0 | 5265 | 0.0401 | 0.4918 | 0.9835 | 0.9835 | 0.9835 | nan | 0.9835 | 0.0 |
|
71 |
+
| 0.0243 | 16.0 | 5616 | 0.0499 | 0.4894 | 0.9788 | 0.9788 | 0.9788 | nan | 0.9788 | 0.0 |
|
72 |
+
| 0.0306 | 17.0 | 5967 | 0.0495 | 0.4902 | 0.9805 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 |
|
73 |
+
| 0.0267 | 18.0 | 6318 | 0.0498 | 0.4907 | 0.9813 | 0.9813 | 0.9813 | nan | 0.9813 | 0.0 |
|
74 |
+
| 0.0295 | 19.0 | 6669 | 0.0566 | 0.4903 | 0.9806 | 0.9806 | 0.9806 | nan | 0.9806 | 0.0 |
|
75 |
+
| 0.0263 | 20.0 | 7020 | 0.0658 | 0.4893 | 0.9786 | 0.9786 | 0.9786 | nan | 0.9786 | 0.0 |
|
76 |
+
| 0.0319 | 21.0 | 7371 | 0.0646 | 0.4885 | 0.9770 | 0.9770 | 0.9770 | nan | 0.9770 | 0.0 |
|
77 |
+
| 0.0236 | 22.0 | 7722 | 0.0608 | 0.4897 | 0.9793 | 0.9793 | 0.9793 | nan | 0.9793 | 0.0 |
|
78 |
+
| 0.0249 | 23.0 | 8073 | 0.0578 | 0.4897 | 0.9795 | 0.9795 | 0.9795 | nan | 0.9795 | 0.0 |
|
79 |
+
| 0.0242 | 24.0 | 8424 | 0.0558 | 0.4902 | 0.9804 | 0.9804 | 0.9804 | nan | 0.9804 | 0.0 |
|
80 |
+
| 0.0264 | 25.0 | 8775 | 0.0579 | 0.4899 | 0.9798 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 |
|
81 |
+
| 0.0235 | 26.0 | 9126 | 0.0582 | 0.4900 | 0.9801 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 |
|
82 |
+
| 0.0235 | 27.0 | 9477 | 0.0609 | 0.4897 | 0.9794 | 0.9794 | 0.9794 | nan | 0.9794 | 0.0 |
|
83 |
+
| 0.0204 | 28.0 | 9828 | 0.0648 | 0.4896 | 0.9791 | 0.9791 | 0.9791 | nan | 0.9791 | 0.0 |
|
84 |
+
| 0.023 | 28.49 | 10000 | 0.0667 | 0.4894 | 0.9788 | 0.9788 | 0.9788 | nan | 0.9788 | 0.0 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.38.0.dev0
|
90 |
+
- Pytorch 2.0.0+cu117
|
91 |
+
- Datasets 2.14.4
|
92 |
+
- Tokenizers 0.15.1
|