segformer-finetuned-biofilm_MRCNNv1_validation

This model is a fine-tuned version of nvidia/mit-b0 on the heroza/biofilm_MRCNNv1_validation dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0667
  • Mean Iou: 0.4894
  • Mean Accuracy: 0.9788
  • Overall Accuracy: 0.9788
  • Accuracy Background: 0.9788
  • Accuracy Biofilm: nan
  • Iou Background: 0.9788
  • Iou Biofilm: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Biofilm Iou Background Iou Biofilm
0.0896 1.0 351 0.0405 0.4947 0.9894 0.9894 0.9894 nan 0.9894 0.0
0.0556 2.0 702 0.0459 0.4925 0.9849 0.9849 0.9849 nan 0.9849 0.0
0.0532 3.0 1053 0.0352 0.4931 0.9863 0.9863 0.9863 nan 0.9863 0.0
0.0473 4.0 1404 0.0318 0.4936 0.9872 0.9872 0.9872 nan 0.9872 0.0
0.0387 5.0 1755 0.0318 0.4928 0.9857 0.9857 0.9857 nan 0.9857 0.0
0.0388 6.0 2106 0.0394 0.4909 0.9817 0.9817 0.9817 nan 0.9817 0.0
0.0344 7.0 2457 0.0431 0.4906 0.9811 0.9811 0.9811 nan 0.9811 0.0
0.0409 8.0 2808 0.0347 0.4922 0.9844 0.9844 0.9844 nan 0.9844 0.0
0.0322 9.0 3159 0.0415 0.4910 0.9819 0.9819 0.9819 nan 0.9819 0.0
0.0331 10.0 3510 0.0558 0.4884 0.9767 0.9767 0.9767 nan 0.9767 0.0
0.0337 11.0 3861 0.0422 0.4923 0.9847 0.9847 0.9847 nan 0.9847 0.0
0.0357 12.0 4212 0.0421 0.4908 0.9816 0.9816 0.9816 nan 0.9816 0.0
0.0306 13.0 4563 0.0398 0.4913 0.9827 0.9827 0.9827 nan 0.9827 0.0
0.0324 14.0 4914 0.0488 0.4905 0.9810 0.9810 0.9810 nan 0.9810 0.0
0.0293 15.0 5265 0.0401 0.4918 0.9835 0.9835 0.9835 nan 0.9835 0.0
0.0243 16.0 5616 0.0499 0.4894 0.9788 0.9788 0.9788 nan 0.9788 0.0
0.0306 17.0 5967 0.0495 0.4902 0.9805 0.9805 0.9805 nan 0.9805 0.0
0.0267 18.0 6318 0.0498 0.4907 0.9813 0.9813 0.9813 nan 0.9813 0.0
0.0295 19.0 6669 0.0566 0.4903 0.9806 0.9806 0.9806 nan 0.9806 0.0
0.0263 20.0 7020 0.0658 0.4893 0.9786 0.9786 0.9786 nan 0.9786 0.0
0.0319 21.0 7371 0.0646 0.4885 0.9770 0.9770 0.9770 nan 0.9770 0.0
0.0236 22.0 7722 0.0608 0.4897 0.9793 0.9793 0.9793 nan 0.9793 0.0
0.0249 23.0 8073 0.0578 0.4897 0.9795 0.9795 0.9795 nan 0.9795 0.0
0.0242 24.0 8424 0.0558 0.4902 0.9804 0.9804 0.9804 nan 0.9804 0.0
0.0264 25.0 8775 0.0579 0.4899 0.9798 0.9798 0.9798 nan 0.9798 0.0
0.0235 26.0 9126 0.0582 0.4900 0.9801 0.9801 0.9801 nan 0.9801 0.0
0.0235 27.0 9477 0.0609 0.4897 0.9794 0.9794 0.9794 nan 0.9794 0.0
0.0204 28.0 9828 0.0648 0.4896 0.9791 0.9791 0.9791 nan 0.9791 0.0
0.023 28.49 10000 0.0667 0.4894 0.9788 0.9788 0.9788 nan 0.9788 0.0

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.14.4
  • Tokenizers 0.15.1
Downloads last month
17
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for heroza/segformer-finetuned-biofilm_MRCNNv1_validation

Base model

nvidia/mit-b0
Finetuned
(335)
this model