metadata
license: other
base_model: nvidia/mit-b0
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: segformer-finetuned-biofilm_MRCNNv1_halfjoin
results: []
segformer-finetuned-biofilm_MRCNNv1_halfjoin
This model is a fine-tuned version of nvidia/mit-b0 on the heroza/biofilm_MRCNNv1_halfjoin dataset. It achieves the following results on the evaluation set:
- Loss: 0.0208
- Mean Iou: 0.4961
- Mean Accuracy: 0.9923
- Overall Accuracy: 0.9923
- Accuracy Background: 0.9923
- Accuracy Biofilm: nan
- Iou Background: 0.9923
- Iou Biofilm: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Biofilm | Iou Background | Iou Biofilm |
---|---|---|---|---|---|---|---|---|---|---|
0.0713 | 1.0 | 478 | 0.0381 | 0.4953 | 0.9906 | 0.9906 | 0.9906 | nan | 0.9906 | 0.0 |
0.044 | 2.0 | 956 | 0.0202 | 0.4975 | 0.9949 | 0.9949 | 0.9949 | nan | 0.9949 | 0.0 |
0.041 | 3.0 | 1434 | 0.0181 | 0.4972 | 0.9945 | 0.9945 | 0.9945 | nan | 0.9945 | 0.0 |
0.0361 | 4.0 | 1912 | 0.0203 | 0.4963 | 0.9926 | 0.9926 | 0.9926 | nan | 0.9926 | 0.0 |
0.0357 | 5.0 | 2390 | 0.0163 | 0.4971 | 0.9942 | 0.9942 | 0.9942 | nan | 0.9942 | 0.0 |
0.0336 | 6.0 | 2868 | 0.0340 | 0.4958 | 0.9915 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 |
0.0295 | 7.0 | 3346 | 0.0126 | 0.4978 | 0.9955 | 0.9955 | 0.9955 | nan | 0.9955 | 0.0 |
0.0251 | 8.0 | 3824 | 0.0220 | 0.4957 | 0.9915 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 |
0.0265 | 9.0 | 4302 | 0.0182 | 0.4966 | 0.9933 | 0.9933 | 0.9933 | nan | 0.9933 | 0.0 |
0.0238 | 10.0 | 4780 | 0.0155 | 0.4970 | 0.9940 | 0.9940 | 0.9940 | nan | 0.9940 | 0.0 |
0.0258 | 11.0 | 5258 | 0.0181 | 0.4966 | 0.9931 | 0.9931 | 0.9931 | nan | 0.9931 | 0.0 |
0.0264 | 12.0 | 5736 | 0.0179 | 0.4969 | 0.9938 | 0.9938 | 0.9938 | nan | 0.9938 | 0.0 |
0.0265 | 13.0 | 6214 | 0.0222 | 0.4959 | 0.9917 | 0.9917 | 0.9917 | nan | 0.9917 | 0.0 |
0.0219 | 14.0 | 6692 | 0.0200 | 0.4962 | 0.9925 | 0.9925 | 0.9925 | nan | 0.9925 | 0.0 |
0.0213 | 15.0 | 7170 | 0.0234 | 0.4958 | 0.9916 | 0.9916 | 0.9916 | nan | 0.9916 | 0.0 |
0.0192 | 16.0 | 7648 | 0.0199 | 0.4961 | 0.9922 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 |
0.0232 | 17.0 | 8126 | 0.0208 | 0.4961 | 0.9923 | 0.9923 | 0.9923 | nan | 0.9923 | 0.0 |
0.0219 | 18.0 | 8604 | 0.0245 | 0.4955 | 0.9909 | 0.9909 | 0.9909 | nan | 0.9909 | 0.0 |
0.0201 | 19.0 | 9082 | 0.0211 | 0.4961 | 0.9922 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 |
0.0192 | 20.0 | 9560 | 0.0207 | 0.4962 | 0.9923 | 0.9923 | 0.9923 | nan | 0.9923 | 0.0 |
0.0175 | 20.92 | 10000 | 0.0208 | 0.4961 | 0.9923 | 0.9923 | 0.9923 | nan | 0.9923 | 0.0 |
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.14.4
- Tokenizers 0.15.1