metadata
license: other
base_model: nvidia/mit-b0
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: segformer-finetuned-biofilm_MRCNNv1_concat
results: []
segformer-finetuned-biofilm_MRCNNv1_concat
This model is a fine-tuned version of nvidia/mit-b0 on the heroza/biofilm_MRCNNv1_concat dataset. It achieves the following results on the evaluation set:
- Loss: 0.0530
- Mean Iou: 0.8677
- Mean Accuracy: 0.9780
- Overall Accuracy: 0.9815
- Accuracy Background: 0.9820
- Accuracy Biofilm: 0.9740
- Iou Background: 0.9804
- Iou Biofilm: 0.7549
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Biofilm | Iou Background | Iou Biofilm |
---|---|---|---|---|---|---|---|---|---|---|
0.0759 | 1.0 | 433 | 0.0649 | 0.8684 | 0.9740 | 0.9818 | 0.9829 | 0.9651 | 0.9807 | 0.7561 |
0.0435 | 2.0 | 866 | 0.0391 | 0.8875 | 0.9616 | 0.9855 | 0.9887 | 0.9345 | 0.9847 | 0.7903 |
0.0407 | 3.0 | 1299 | 0.0353 | 0.8951 | 0.9696 | 0.9865 | 0.9888 | 0.9504 | 0.9857 | 0.8046 |
0.0372 | 4.0 | 1732 | 0.0489 | 0.8765 | 0.9810 | 0.9830 | 0.9833 | 0.9788 | 0.9820 | 0.7711 |
0.0378 | 5.0 | 2165 | 0.0311 | 0.9020 | 0.9574 | 0.9879 | 0.9919 | 0.9229 | 0.9872 | 0.8168 |
0.0325 | 6.0 | 2598 | 0.0510 | 0.8663 | 0.9745 | 0.9814 | 0.9823 | 0.9666 | 0.9803 | 0.7524 |
0.0306 | 7.0 | 3031 | 0.0428 | 0.8873 | 0.9760 | 0.9850 | 0.9862 | 0.9657 | 0.9842 | 0.7904 |
0.0318 | 8.0 | 3464 | 0.0399 | 0.8837 | 0.9739 | 0.9845 | 0.9859 | 0.9618 | 0.9836 | 0.7839 |
0.0302 | 9.0 | 3897 | 0.0436 | 0.8795 | 0.9689 | 0.9840 | 0.9859 | 0.9520 | 0.9830 | 0.7760 |
0.0236 | 10.0 | 4330 | 0.0391 | 0.8856 | 0.9713 | 0.9849 | 0.9867 | 0.9560 | 0.9840 | 0.7871 |
0.0247 | 11.0 | 4763 | 0.0451 | 0.8705 | 0.9731 | 0.9822 | 0.9834 | 0.9628 | 0.9812 | 0.7598 |
0.0213 | 12.0 | 5196 | 0.0487 | 0.8656 | 0.9735 | 0.9813 | 0.9824 | 0.9647 | 0.9802 | 0.7510 |
0.0256 | 13.0 | 5629 | 0.0444 | 0.8799 | 0.9668 | 0.9841 | 0.9864 | 0.9473 | 0.9832 | 0.7766 |
0.0218 | 14.0 | 6062 | 0.0492 | 0.8679 | 0.9773 | 0.9816 | 0.9822 | 0.9725 | 0.9805 | 0.7553 |
0.0216 | 15.0 | 6495 | 0.0502 | 0.8717 | 0.9748 | 0.9824 | 0.9834 | 0.9663 | 0.9813 | 0.7621 |
0.0206 | 16.0 | 6928 | 0.0565 | 0.8623 | 0.9766 | 0.9806 | 0.9811 | 0.9721 | 0.9794 | 0.7453 |
0.0223 | 17.0 | 7361 | 0.0509 | 0.8666 | 0.9730 | 0.9815 | 0.9826 | 0.9635 | 0.9804 | 0.7527 |
0.0226 | 18.0 | 7794 | 0.0464 | 0.8794 | 0.9792 | 0.9836 | 0.9842 | 0.9743 | 0.9826 | 0.7762 |
0.0243 | 19.0 | 8227 | 0.0546 | 0.8649 | 0.9824 | 0.9809 | 0.9806 | 0.9843 | 0.9797 | 0.7501 |
0.02 | 20.0 | 8660 | 0.0567 | 0.8648 | 0.9766 | 0.9810 | 0.9816 | 0.9716 | 0.9799 | 0.7496 |
0.0196 | 21.0 | 9093 | 0.0559 | 0.8648 | 0.9784 | 0.9810 | 0.9813 | 0.9755 | 0.9798 | 0.7497 |
0.0206 | 22.0 | 9526 | 0.0552 | 0.8652 | 0.9779 | 0.9811 | 0.9815 | 0.9742 | 0.9799 | 0.7504 |
0.0189 | 23.0 | 9959 | 0.0544 | 0.8661 | 0.9785 | 0.9812 | 0.9816 | 0.9753 | 0.9801 | 0.7521 |
0.0208 | 23.09 | 10000 | 0.0530 | 0.8677 | 0.9780 | 0.9815 | 0.9820 | 0.9740 | 0.9804 | 0.7549 |
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.14.4
- Tokenizers 0.15.1