heroza's picture
End of training
43ef69b verified
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - image-segmentation
  - vision
  - generated_from_trainer
model-index:
  - name: segformer-finetuned-biofilm_MRCNNv1_concat
    results: []

segformer-finetuned-biofilm_MRCNNv1_concat

This model is a fine-tuned version of nvidia/mit-b0 on the heroza/biofilm_MRCNNv1_concat dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0530
  • Mean Iou: 0.8677
  • Mean Accuracy: 0.9780
  • Overall Accuracy: 0.9815
  • Accuracy Background: 0.9820
  • Accuracy Biofilm: 0.9740
  • Iou Background: 0.9804
  • Iou Biofilm: 0.7549

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Biofilm Iou Background Iou Biofilm
0.0759 1.0 433 0.0649 0.8684 0.9740 0.9818 0.9829 0.9651 0.9807 0.7561
0.0435 2.0 866 0.0391 0.8875 0.9616 0.9855 0.9887 0.9345 0.9847 0.7903
0.0407 3.0 1299 0.0353 0.8951 0.9696 0.9865 0.9888 0.9504 0.9857 0.8046
0.0372 4.0 1732 0.0489 0.8765 0.9810 0.9830 0.9833 0.9788 0.9820 0.7711
0.0378 5.0 2165 0.0311 0.9020 0.9574 0.9879 0.9919 0.9229 0.9872 0.8168
0.0325 6.0 2598 0.0510 0.8663 0.9745 0.9814 0.9823 0.9666 0.9803 0.7524
0.0306 7.0 3031 0.0428 0.8873 0.9760 0.9850 0.9862 0.9657 0.9842 0.7904
0.0318 8.0 3464 0.0399 0.8837 0.9739 0.9845 0.9859 0.9618 0.9836 0.7839
0.0302 9.0 3897 0.0436 0.8795 0.9689 0.9840 0.9859 0.9520 0.9830 0.7760
0.0236 10.0 4330 0.0391 0.8856 0.9713 0.9849 0.9867 0.9560 0.9840 0.7871
0.0247 11.0 4763 0.0451 0.8705 0.9731 0.9822 0.9834 0.9628 0.9812 0.7598
0.0213 12.0 5196 0.0487 0.8656 0.9735 0.9813 0.9824 0.9647 0.9802 0.7510
0.0256 13.0 5629 0.0444 0.8799 0.9668 0.9841 0.9864 0.9473 0.9832 0.7766
0.0218 14.0 6062 0.0492 0.8679 0.9773 0.9816 0.9822 0.9725 0.9805 0.7553
0.0216 15.0 6495 0.0502 0.8717 0.9748 0.9824 0.9834 0.9663 0.9813 0.7621
0.0206 16.0 6928 0.0565 0.8623 0.9766 0.9806 0.9811 0.9721 0.9794 0.7453
0.0223 17.0 7361 0.0509 0.8666 0.9730 0.9815 0.9826 0.9635 0.9804 0.7527
0.0226 18.0 7794 0.0464 0.8794 0.9792 0.9836 0.9842 0.9743 0.9826 0.7762
0.0243 19.0 8227 0.0546 0.8649 0.9824 0.9809 0.9806 0.9843 0.9797 0.7501
0.02 20.0 8660 0.0567 0.8648 0.9766 0.9810 0.9816 0.9716 0.9799 0.7496
0.0196 21.0 9093 0.0559 0.8648 0.9784 0.9810 0.9813 0.9755 0.9798 0.7497
0.0206 22.0 9526 0.0552 0.8652 0.9779 0.9811 0.9815 0.9742 0.9799 0.7504
0.0189 23.0 9959 0.0544 0.8661 0.9785 0.9812 0.9816 0.9753 0.9801 0.7521
0.0208 23.09 10000 0.0530 0.8677 0.9780 0.9815 0.9820 0.9740 0.9804 0.7549

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.14.4
  • Tokenizers 0.15.1