distilbert-base-uncased-finetuned-sarcasm
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.3075
- Matthews Correlation: 0.4109
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
---|---|---|---|---|
No log | 1.0 | 57 | 0.7322 | 0.0 |
No log | 2.0 | 114 | 0.6734 | 0.1752 |
No log | 3.0 | 171 | 0.6436 | 0.3228 |
No log | 4.0 | 228 | 0.7826 | 0.2778 |
No log | 5.0 | 285 | 1.0203 | 0.2707 |
No log | 6.0 | 342 | 1.0190 | 0.3356 |
No log | 7.0 | 399 | 1.1675 | 0.3177 |
No log | 8.0 | 456 | 1.5206 | 0.2514 |
0.3597 | 9.0 | 513 | 1.5789 | 0.4097 |
0.3597 | 10.0 | 570 | 1.5752 | 0.3740 |
0.3597 | 11.0 | 627 | 1.9003 | 0.3506 |
0.3597 | 12.0 | 684 | 1.9354 | 0.3855 |
0.3597 | 13.0 | 741 | 1.9770 | 0.3289 |
0.3597 | 14.0 | 798 | 1.9802 | 0.3583 |
0.3597 | 15.0 | 855 | 2.1322 | 0.3255 |
0.3597 | 16.0 | 912 | 2.1541 | 0.2994 |
0.3597 | 17.0 | 969 | 2.2047 | 0.2992 |
0.0329 | 18.0 | 1026 | 2.0794 | 0.3466 |
0.0329 | 19.0 | 1083 | 2.0705 | 0.3012 |
0.0329 | 20.0 | 1140 | 2.0158 | 0.3759 |
0.0329 | 21.0 | 1197 | 2.3999 | 0.3151 |
0.0329 | 22.0 | 1254 | 2.1017 | 0.3917 |
0.0329 | 23.0 | 1311 | 2.3275 | 0.3255 |
0.0329 | 24.0 | 1368 | 2.2258 | 0.3386 |
0.0329 | 25.0 | 1425 | 2.3628 | 0.3406 |
0.0329 | 26.0 | 1482 | 2.4197 | 0.3077 |
0.0145 | 27.0 | 1539 | 2.2661 | 0.3759 |
0.0145 | 28.0 | 1596 | 2.4074 | 0.3077 |
0.0145 | 29.0 | 1653 | 2.3326 | 0.3255 |
0.0145 | 30.0 | 1710 | 2.2813 | 0.3740 |
0.0145 | 31.0 | 1767 | 2.3242 | 0.3181 |
0.0145 | 32.0 | 1824 | 2.5039 | 0.2930 |
0.0145 | 33.0 | 1881 | 2.6045 | 0.3151 |
0.0145 | 34.0 | 1938 | 2.3075 | 0.4109 |
0.0145 | 35.0 | 1995 | 2.3572 | 0.3759 |
0.0129 | 36.0 | 2052 | 2.3833 | 0.3759 |
0.0129 | 37.0 | 2109 | 2.6260 | 0.3009 |
0.0129 | 38.0 | 2166 | 2.6132 | 0.3289 |
0.0129 | 39.0 | 2223 | 2.4151 | 0.3989 |
0.0129 | 40.0 | 2280 | 2.5695 | 0.3360 |
0.0129 | 41.0 | 2337 | 2.3902 | 0.3989 |
0.0129 | 42.0 | 2394 | 2.4388 | 0.3759 |
0.0129 | 43.0 | 2451 | 2.6323 | 0.3289 |
0.0065 | 44.0 | 2508 | 2.6131 | 0.3553 |
0.0065 | 45.0 | 2565 | 2.4426 | 0.3958 |
0.0065 | 46.0 | 2622 | 2.4481 | 0.3958 |
0.0065 | 47.0 | 2679 | 2.4440 | 0.3958 |
0.0065 | 48.0 | 2736 | 2.4689 | 0.3784 |
0.0065 | 49.0 | 2793 | 2.4725 | 0.3784 |
0.0065 | 50.0 | 2850 | 2.4718 | 0.3784 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.