distilbert-base-uncased-finetuned-sarcasm

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3075
  • Matthews Correlation: 0.4109

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Matthews Correlation
No log 1.0 57 0.7322 0.0
No log 2.0 114 0.6734 0.1752
No log 3.0 171 0.6436 0.3228
No log 4.0 228 0.7826 0.2778
No log 5.0 285 1.0203 0.2707
No log 6.0 342 1.0190 0.3356
No log 7.0 399 1.1675 0.3177
No log 8.0 456 1.5206 0.2514
0.3597 9.0 513 1.5789 0.4097
0.3597 10.0 570 1.5752 0.3740
0.3597 11.0 627 1.9003 0.3506
0.3597 12.0 684 1.9354 0.3855
0.3597 13.0 741 1.9770 0.3289
0.3597 14.0 798 1.9802 0.3583
0.3597 15.0 855 2.1322 0.3255
0.3597 16.0 912 2.1541 0.2994
0.3597 17.0 969 2.2047 0.2992
0.0329 18.0 1026 2.0794 0.3466
0.0329 19.0 1083 2.0705 0.3012
0.0329 20.0 1140 2.0158 0.3759
0.0329 21.0 1197 2.3999 0.3151
0.0329 22.0 1254 2.1017 0.3917
0.0329 23.0 1311 2.3275 0.3255
0.0329 24.0 1368 2.2258 0.3386
0.0329 25.0 1425 2.3628 0.3406
0.0329 26.0 1482 2.4197 0.3077
0.0145 27.0 1539 2.2661 0.3759
0.0145 28.0 1596 2.4074 0.3077
0.0145 29.0 1653 2.3326 0.3255
0.0145 30.0 1710 2.2813 0.3740
0.0145 31.0 1767 2.3242 0.3181
0.0145 32.0 1824 2.5039 0.2930
0.0145 33.0 1881 2.6045 0.3151
0.0145 34.0 1938 2.3075 0.4109
0.0145 35.0 1995 2.3572 0.3759
0.0129 36.0 2052 2.3833 0.3759
0.0129 37.0 2109 2.6260 0.3009
0.0129 38.0 2166 2.6132 0.3289
0.0129 39.0 2223 2.4151 0.3989
0.0129 40.0 2280 2.5695 0.3360
0.0129 41.0 2337 2.3902 0.3989
0.0129 42.0 2394 2.4388 0.3759
0.0129 43.0 2451 2.6323 0.3289
0.0065 44.0 2508 2.6131 0.3553
0.0065 45.0 2565 2.4426 0.3958
0.0065 46.0 2622 2.4481 0.3958
0.0065 47.0 2679 2.4440 0.3958
0.0065 48.0 2736 2.4689 0.3784
0.0065 49.0 2793 2.4725 0.3784
0.0065 50.0 2850 2.4718 0.3784

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
7
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.