File size: 3,643 Bytes
9c2a6bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Regression_bert_1
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Regression_bert_1
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3594
- Train Mae: 0.2822
- Train Mse: 0.1206
- Train R2-score: 0.6163
- Train Accuracy: 0.5308
- Validation Loss: 0.3503
- Validation Mae: 0.3488
- Validation Mse: 0.1574
- Validation R2-score: 0.8718
- Validation Accuracy: 0.2703
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Mae | Train Mse | Train R2-score | Train Accuracy | Validation Loss | Validation Mae | Validation Mse | Validation R2-score | Validation Accuracy | Epoch |
|:----------:|:---------:|:---------:|:--------------:|:--------------:|:---------------:|:--------------:|:--------------:|:-------------------:|:-------------------:|:-----:|
| 0.4941 | 0.2941 | 0.1183 | -0.5444 | 0.5769 | 0.3126 | 0.3108 | 0.1099 | 0.8865 | 0.2703 | 0 |
| 0.4660 | 0.3256 | 0.1546 | 0.0002 | 0.5231 | 0.3682 | 0.3669 | 0.1835 | 0.8572 | 0.2703 | 1 |
| 0.4110 | 0.3178 | 0.1552 | 0.6834 | 0.5 | 0.4381 | 0.4369 | 0.2390 | 0.8207 | 0.2703 | 2 |
| 0.3886 | 0.3112 | 0.1560 | 0.7184 | 0.5231 | 0.3566 | 0.3552 | 0.1672 | 0.8661 | 0.2703 | 3 |
| 0.4055 | 0.2890 | 0.1248 | 0.7655 | 0.6077 | 0.4364 | 0.4353 | 0.2376 | 0.8218 | 0.2703 | 4 |
| 0.3955 | 0.2930 | 0.1272 | 0.7685 | 0.5538 | 0.3868 | 0.3855 | 0.1971 | 0.8489 | 0.2703 | 5 |
| 0.3949 | 0.3003 | 0.1386 | 0.3857 | 0.5154 | 0.3614 | 0.3600 | 0.1751 | 0.8620 | 0.2703 | 6 |
| 0.3390 | 0.2874 | 0.1306 | 0.7121 | 0.5231 | 0.3766 | 0.3753 | 0.1894 | 0.8542 | 0.2703 | 7 |
| 0.3556 | 0.2775 | 0.1190 | 0.7890 | 0.5231 | 0.3561 | 0.3547 | 0.1664 | 0.8667 | 0.2703 | 8 |
| 0.3594 | 0.2822 | 0.1206 | 0.6163 | 0.5308 | 0.3503 | 0.3488 | 0.1574 | 0.8718 | 0.2703 | 9 |
### Framework versions
- Transformers 4.27.2
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2
|