Multilingual Sarcasm Detector
Multilingual Sarcasm Detector is a text classification model built to detect sarcasm from news article titles. It is fine-tuned on bert-base-multilingual-uncased and the training data consists of ready-made datasets available on Kaggle as well scraped data from multiple newspapers in English, Dutch and Italian.
Labels: 0 -> Not Sarcastic; 1 -> Sarcastic
Source Data
Datasets:
- English language data: Kaggle: News Headlines Dataset For Sarcasm Detection.
- Dutch non-sarcastic data: Kaggle: Dutch News Articles
Scraped data:
- Dutch sarcastic news from De Speld
- Italian non-sarcastic news from Il Giornale
- Italian sarcastic news from Lercio
Training Dataset
Codebase:
- Git Repo: Official repository
Example of classification
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import string
def preprocess_data(text: str) -> str:
return text.lower().translate(str.maketrans("", "", string.punctuation)).strip()
MODEL_PATH = "helinivan/multilingual-sarcasm-detector"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
text = "CIA Realizes It's Been Using Black Highlighters All These Years."
tokenized_text = tokenizer([preprocess_data(text)], padding=True, truncation=True, max_length=256, return_tensors="pt")
output = model(**tokenized_text)
probs = output.logits.softmax(dim=-1).tolist()[0]
confidence = max(probs)
prediction = probs.index(confidence)
results = {"is_sarcastic": prediction, "confidence": confidence}
Output:
{'is_sarcastic': 1, 'confidence': 0.9374828934669495}
Performance
Model-Name | F1 | Precision | Recall | Accuracy |
---|---|---|---|---|
helinivan/english-sarcasm-detector | 92.38 | 92.75 | 92.38 | 92.42 |
helinivan/italian-sarcasm-detector | 88.26 | 87.66 | 89.66 | 88.69 |
helinivan/multilingual-sarcasm-detector | 87.23 | 88.65 | 86.33 | 88.30 |
helinivan/dutch-sarcasm-detector | 83.02 | 84.27 | 82.01 | 86.81 |
- Downloads last month
- 99
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.