distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.1580
- Accuracy: 0.9487
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 13
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.7033 | 1.0 | 318 | 1.2016 | 0.7610 |
0.9281 | 2.0 | 636 | 0.6128 | 0.8855 |
0.4901 | 3.0 | 954 | 0.3447 | 0.9252 |
0.289 | 4.0 | 1272 | 0.2389 | 0.9403 |
0.2016 | 5.0 | 1590 | 0.2000 | 0.9455 |
0.1647 | 6.0 | 1908 | 0.1826 | 0.9484 |
0.1446 | 7.0 | 2226 | 0.1723 | 0.9487 |
0.1329 | 8.0 | 2544 | 0.1672 | 0.9477 |
0.1255 | 9.0 | 2862 | 0.1639 | 0.9494 |
0.1211 | 10.0 | 3180 | 0.1621 | 0.9497 |
0.1171 | 11.0 | 3498 | 0.1591 | 0.95 |
0.1149 | 12.0 | 3816 | 0.1585 | 0.9494 |
0.1136 | 13.0 | 4134 | 0.1580 | 0.9487 |
Framework versions
- Transformers 4.16.2
- Pytorch 2.4.1+cu121
- Datasets 1.16.1
- Tokenizers 0.19.1
- Downloads last month
- 2