|
--- |
|
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit |
|
library_name: transformers |
|
license: llama3 |
|
tags: |
|
- facebook |
|
- meta |
|
- pytorch |
|
- llama |
|
- llama-3 |
|
- llama-factory |
|
- lora |
|
- generated_from_trainer |
|
model-index: |
|
- name: llama3_lora |
|
results: [] |
|
language: |
|
- fa |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama3_lora |
|
|
|
This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct-bnb-4bit](https://huggingface.co/unsloth/llama-3-8b-Instruct-bnb-4bit) on the identity and the alpaca_en_demo datasets. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
|
|
```python |
|
import transformers |
|
import torch |
|
|
|
model_id = "hbsanaweb/sana-lama" |
|
|
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model_id, |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
device_map="auto", |
|
) |
|
|
|
messages = [ |
|
{"role": "system", "content": "تو یک چت بات به زبان فارسی هستی"}, |
|
{"role": "user", "content": "شما کی هستی؟"}, |
|
] |
|
|
|
terminators = [ |
|
pipeline.tokenizer.eos_token_id, |
|
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = pipeline( |
|
messages, |
|
max_new_tokens=256, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
) |
|
print(outputs[0]["generated_text"][-1]) |
|
``` |
|
|
|
#### Transformers AutoModelForCausalLM |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model_id = "hbsanaweb/sana-lama" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
) |
|
|
|
messages = [ |
|
{"role": "system", "content": "تو یک چت بات به زبان فارسی هستی"}, |
|
{"role": "user", "content": "شما کی هستی؟"}, |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=256, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
) |
|
response = outputs[0][input_ids.shape[-1]:] |
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
``` |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |