metadata
base_model: microsoft/mdeberta-v3-base
datasets:
- tweet_sentiment_multilingual
library_name: transformers
license: mit
metrics:
- accuracy
- f1
tags:
- generated_from_trainer
model-index:
- name: >-
scenario-NON-KD-PR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_
results: []
scenario-NON-KD-PR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:
- Loss: 4.7108
- Accuracy: 0.5475
- F1: 0.5469
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 66
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.0791 | 1.0870 | 500 | 1.0368 | 0.4660 | 0.4346 |
0.9866 | 2.1739 | 1000 | 1.0697 | 0.5116 | 0.4871 |
0.891 | 3.2609 | 1500 | 1.0182 | 0.5351 | 0.5315 |
0.7817 | 4.3478 | 2000 | 1.0793 | 0.5382 | 0.5268 |
0.6754 | 5.4348 | 2500 | 1.2254 | 0.5440 | 0.5347 |
0.5735 | 6.5217 | 3000 | 1.3490 | 0.5490 | 0.5419 |
0.4804 | 7.6087 | 3500 | 1.4240 | 0.5374 | 0.5365 |
0.402 | 8.6957 | 4000 | 1.6744 | 0.5409 | 0.5346 |
0.3338 | 9.7826 | 4500 | 1.8045 | 0.5293 | 0.5303 |
0.2826 | 10.8696 | 5000 | 1.8731 | 0.5340 | 0.5340 |
0.239 | 11.9565 | 5500 | 2.0811 | 0.5336 | 0.5331 |
0.1932 | 13.0435 | 6000 | 2.5003 | 0.5374 | 0.5358 |
0.172 | 14.1304 | 6500 | 2.3698 | 0.5374 | 0.5364 |
0.1508 | 15.2174 | 7000 | 2.9410 | 0.5502 | 0.5455 |
0.1364 | 16.3043 | 7500 | 2.9157 | 0.5463 | 0.5472 |
0.1274 | 17.3913 | 8000 | 2.8807 | 0.5417 | 0.5329 |
0.1187 | 18.4783 | 8500 | 3.1515 | 0.5332 | 0.5328 |
0.1021 | 19.5652 | 9000 | 3.1270 | 0.5355 | 0.5363 |
0.0998 | 20.6522 | 9500 | 3.1811 | 0.5521 | 0.5512 |
0.0919 | 21.7391 | 10000 | 3.0586 | 0.5409 | 0.5327 |
0.0904 | 22.8261 | 10500 | 3.1029 | 0.5382 | 0.5382 |
0.0785 | 23.9130 | 11000 | 3.3520 | 0.5405 | 0.5389 |
0.0695 | 25.0 | 11500 | 2.8631 | 0.5475 | 0.5443 |
0.0683 | 26.0870 | 12000 | 3.3984 | 0.5467 | 0.5462 |
0.0634 | 27.1739 | 12500 | 3.3375 | 0.5521 | 0.5520 |
0.0554 | 28.2609 | 13000 | 3.5643 | 0.5444 | 0.5442 |
0.0521 | 29.3478 | 13500 | 3.6555 | 0.5386 | 0.5373 |
0.0468 | 30.4348 | 14000 | 3.8146 | 0.5498 | 0.5477 |
0.0475 | 31.5217 | 14500 | 3.9862 | 0.5370 | 0.5374 |
0.0423 | 32.6087 | 15000 | 3.9440 | 0.5413 | 0.5377 |
0.0417 | 33.6957 | 15500 | 3.9646 | 0.5405 | 0.5409 |
0.0408 | 34.7826 | 16000 | 3.8754 | 0.5424 | 0.5433 |
0.0314 | 35.8696 | 16500 | 4.2460 | 0.5413 | 0.5394 |
0.0344 | 36.9565 | 17000 | 4.2120 | 0.5455 | 0.5444 |
0.0296 | 38.0435 | 17500 | 4.4753 | 0.5448 | 0.5451 |
0.0308 | 39.1304 | 18000 | 4.1944 | 0.5494 | 0.5491 |
0.0225 | 40.2174 | 18500 | 4.4062 | 0.5486 | 0.5466 |
0.0284 | 41.3043 | 19000 | 4.1900 | 0.5444 | 0.5428 |
0.0191 | 42.3913 | 19500 | 4.5725 | 0.5444 | 0.5441 |
0.0202 | 43.4783 | 20000 | 4.5546 | 0.5502 | 0.5492 |
0.019 | 44.5652 | 20500 | 4.6947 | 0.5463 | 0.5465 |
0.02 | 45.6522 | 21000 | 4.4766 | 0.5471 | 0.5462 |
0.0182 | 46.7391 | 21500 | 4.4498 | 0.5490 | 0.5480 |
0.0131 | 47.8261 | 22000 | 4.5762 | 0.5490 | 0.5484 |
0.0105 | 48.9130 | 22500 | 4.7128 | 0.5467 | 0.5464 |
0.015 | 50.0 | 23000 | 4.7108 | 0.5475 | 0.5469 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1