File size: 4,979 Bytes
bc6440a
6e94e20
bc6440a
 
1e7ffe8
 
bc6440a
 
 
1e7ffe8
 
bc6440a
 
1e85a2d
bc6440a
 
 
 
 
 
 
6e94e20
bc6440a
c9f09d1
 
 
bc6440a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9f09d1
bc6440a
 
 
 
 
 
6e94e20
 
c9f09d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc6440a
 
 
 
6e94e20
bc6440a
 
6e94e20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
base_model: microsoft/mdeberta-v3-base
datasets:
- tweet_sentiment_multilingual
library_name: transformers
license: mit
metrics:
- accuracy
- f1
tags:
- generated_from_trainer
model-index:
- name: scenario-NON-KD-PR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-NON-KD-PR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_

This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tweet_sentiment_multilingual dataset.
It achieves the following results on the evaluation set:
- Loss: 5.1517
- Accuracy: 0.5571
- F1: 0.5567

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Accuracy | F1     |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|:------:|
| 1.0024        | 1.0870  | 500   | 0.9815          | 0.5556   | 0.5555 |
| 0.8411        | 2.1739  | 1000  | 0.9889          | 0.5772   | 0.5763 |
| 0.6502        | 3.2609  | 1500  | 1.1977          | 0.5633   | 0.5598 |
| 0.4723        | 4.3478  | 2000  | 1.6466          | 0.5617   | 0.5626 |
| 0.3276        | 5.4348  | 2500  | 1.7205          | 0.5498   | 0.5519 |
| 0.2221        | 6.5217  | 3000  | 2.0190          | 0.5590   | 0.5600 |
| 0.167         | 7.6087  | 3500  | 2.5446          | 0.5552   | 0.5562 |
| 0.1317        | 8.6957  | 4000  | 2.5112          | 0.5525   | 0.5539 |
| 0.1141        | 9.7826  | 4500  | 2.6152          | 0.5594   | 0.5545 |
| 0.1007        | 10.8696 | 5000  | 3.2079          | 0.5513   | 0.5416 |
| 0.0827        | 11.9565 | 5500  | 2.7099          | 0.5590   | 0.5590 |
| 0.0653        | 13.0435 | 6000  | 3.1595          | 0.5721   | 0.5678 |
| 0.0644        | 14.1304 | 6500  | 3.1304          | 0.5679   | 0.5667 |
| 0.054         | 15.2174 | 7000  | 3.0885          | 0.5590   | 0.5573 |
| 0.0504        | 16.3043 | 7500  | 3.5769          | 0.5583   | 0.5580 |
| 0.0394        | 17.3913 | 8000  | 3.5597          | 0.5606   | 0.5608 |
| 0.0419        | 18.4783 | 8500  | 3.8739          | 0.5525   | 0.5501 |
| 0.0406        | 19.5652 | 9000  | 3.5220          | 0.5667   | 0.5660 |
| 0.0355        | 20.6522 | 9500  | 4.0325          | 0.5691   | 0.5667 |
| 0.0281        | 21.7391 | 10000 | 3.7630          | 0.5602   | 0.5614 |
| 0.0266        | 22.8261 | 10500 | 4.0162          | 0.5617   | 0.5553 |
| 0.0283        | 23.9130 | 11000 | 3.9135          | 0.5525   | 0.5529 |
| 0.027         | 25.0    | 11500 | 4.0734          | 0.5563   | 0.5541 |
| 0.0205        | 26.0870 | 12000 | 4.2900          | 0.5583   | 0.5586 |
| 0.0198        | 27.1739 | 12500 | 4.2693          | 0.5579   | 0.5572 |
| 0.0155        | 28.2609 | 13000 | 4.7029          | 0.5563   | 0.5435 |
| 0.0187        | 29.3478 | 13500 | 4.4409          | 0.5640   | 0.5616 |
| 0.014         | 30.4348 | 14000 | 4.4588          | 0.5571   | 0.5568 |
| 0.0147        | 31.5217 | 14500 | 4.3420          | 0.5652   | 0.5640 |
| 0.0128        | 32.6087 | 15000 | 4.5721          | 0.5598   | 0.5575 |
| 0.0099        | 33.6957 | 15500 | 4.5574          | 0.5586   | 0.5599 |
| 0.0101        | 34.7826 | 16000 | 4.3777          | 0.5610   | 0.5613 |
| 0.0053        | 35.8696 | 16500 | 4.8103          | 0.5610   | 0.5617 |
| 0.0107        | 36.9565 | 17000 | 4.2925          | 0.5590   | 0.5589 |
| 0.0081        | 38.0435 | 17500 | 4.5884          | 0.5606   | 0.5591 |
| 0.0071        | 39.1304 | 18000 | 4.7187          | 0.5617   | 0.5621 |
| 0.0075        | 40.2174 | 18500 | 4.7305          | 0.5594   | 0.5591 |
| 0.0081        | 41.3043 | 19000 | 4.5589          | 0.5602   | 0.5607 |
| 0.0059        | 42.3913 | 19500 | 4.6516          | 0.5598   | 0.5589 |
| 0.0061        | 43.4783 | 20000 | 4.6553          | 0.5613   | 0.5605 |
| 0.0032        | 44.5652 | 20500 | 4.9672          | 0.5567   | 0.5569 |
| 0.0031        | 45.6522 | 21000 | 5.0283          | 0.5590   | 0.5595 |
| 0.0032        | 46.7391 | 21500 | 5.0801          | 0.5563   | 0.5552 |
| 0.0032        | 47.8261 | 22000 | 5.0934          | 0.5602   | 0.5604 |
| 0.0017        | 48.9130 | 22500 | 5.1305          | 0.5579   | 0.5581 |
| 0.0017        | 50.0    | 23000 | 5.1517          | 0.5571   | 0.5567 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1