scenario-MDBT-TCR_data-en-cardiff_eng_only
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.4982
- Accuracy: 0.5873
- F1: 0.5922
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 66
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.03 | 60 | 0.9674 | 0.5220 | 0.5235 |
No log | 2.07 | 120 | 0.9588 | 0.5847 | 0.5738 |
No log | 3.1 | 180 | 1.1066 | 0.5789 | 0.5815 |
No log | 4.14 | 240 | 1.2807 | 0.5547 | 0.5544 |
No log | 5.17 | 300 | 1.4846 | 0.5899 | 0.5874 |
No log | 6.21 | 360 | 1.8475 | 0.5564 | 0.5582 |
No log | 7.24 | 420 | 2.1012 | 0.5679 | 0.5685 |
No log | 8.28 | 480 | 2.2050 | 0.5855 | 0.5892 |
0.4223 | 9.31 | 540 | 2.3754 | 0.5807 | 0.5839 |
0.4223 | 10.34 | 600 | 2.4936 | 0.5798 | 0.5840 |
0.4223 | 11.38 | 660 | 2.7673 | 0.5631 | 0.5666 |
0.4223 | 12.41 | 720 | 2.5116 | 0.5798 | 0.5820 |
0.4223 | 13.45 | 780 | 2.7368 | 0.5622 | 0.5660 |
0.4223 | 14.48 | 840 | 2.7623 | 0.5763 | 0.5812 |
0.4223 | 15.52 | 900 | 2.8766 | 0.5833 | 0.5874 |
0.4223 | 16.55 | 960 | 2.8306 | 0.5838 | 0.5845 |
0.0534 | 17.59 | 1020 | 3.0452 | 0.5961 | 0.6000 |
0.0534 | 18.62 | 1080 | 3.1689 | 0.5825 | 0.5855 |
0.0534 | 19.66 | 1140 | 3.0359 | 0.5851 | 0.5893 |
0.0534 | 20.69 | 1200 | 3.4232 | 0.5754 | 0.5795 |
0.0534 | 21.72 | 1260 | 3.3304 | 0.5829 | 0.5876 |
0.0534 | 22.76 | 1320 | 3.3603 | 0.5864 | 0.5913 |
0.0534 | 23.79 | 1380 | 3.3638 | 0.5829 | 0.5876 |
0.0534 | 24.83 | 1440 | 3.3312 | 0.5930 | 0.5966 |
0.0065 | 25.86 | 1500 | 3.4156 | 0.5873 | 0.5919 |
0.0065 | 26.9 | 1560 | 3.4476 | 0.5877 | 0.5925 |
0.0065 | 27.93 | 1620 | 3.4884 | 0.5829 | 0.5878 |
0.0065 | 28.97 | 1680 | 3.4938 | 0.5842 | 0.5893 |
0.0065 | 30.0 | 1740 | 3.4982 | 0.5873 | 0.5922 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 2