haryoaw's picture
Initial Commit
f94c52f verified
|
raw
history blame
2.71 kB
---
license: mit
base_model: haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: scenario-KD-PR-CDF-EN-FROM-EN-D2_data-en-cardiff_eng_only66
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario-KD-PR-CDF-EN-FROM-EN-D2_data-en-cardiff_eng_only66
This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3348
- Accuracy: 0.4846
- F1: 0.4848
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 66
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.72 | 100 | 1.3126 | 0.4718 | 0.4615 |
| No log | 3.45 | 200 | 1.3334 | 0.4638 | 0.4466 |
| No log | 5.17 | 300 | 1.3417 | 0.4810 | 0.4818 |
| No log | 6.9 | 400 | 1.3541 | 0.4766 | 0.4702 |
| 1.1194 | 8.62 | 500 | 1.3613 | 0.4916 | 0.4913 |
| 1.1194 | 10.34 | 600 | 1.3438 | 0.4797 | 0.4784 |
| 1.1194 | 12.07 | 700 | 1.3501 | 0.4713 | 0.4713 |
| 1.1194 | 13.79 | 800 | 1.3617 | 0.4687 | 0.4683 |
| 1.1194 | 15.52 | 900 | 1.3527 | 0.4819 | 0.4812 |
| 0.9567 | 17.24 | 1000 | 1.3561 | 0.4824 | 0.4777 |
| 0.9567 | 18.97 | 1100 | 1.3531 | 0.4749 | 0.4732 |
| 0.9567 | 20.69 | 1200 | 1.3379 | 0.4960 | 0.4965 |
| 0.9567 | 22.41 | 1300 | 1.3384 | 0.4797 | 0.4793 |
| 0.9567 | 24.14 | 1400 | 1.3404 | 0.4824 | 0.4807 |
| 0.9355 | 25.86 | 1500 | 1.3475 | 0.4753 | 0.4755 |
| 0.9355 | 27.59 | 1600 | 1.3409 | 0.4780 | 0.4776 |
| 0.9355 | 29.31 | 1700 | 1.3348 | 0.4846 | 0.4848 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3