File size: 44,111 Bytes
6cec077 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 |
import numpy as np
import onnxruntime as ort
from rknnlite.api.rknn_lite import RKNNLite
import numpy as np
import soundfile as sf
from transformers import AutoTokenizer
import time
import os
import re
import cn2an
from pypinyin import lazy_pinyin, Style
from typing import List
from typing import Tuple
import jieba
import jieba.posseg as psg
def convert_pad_shape(pad_shape):
layer = pad_shape[::-1]
pad_shape = [item for sublist in layer for item in sublist]
return pad_shape
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = np.arange(max_length, dtype=length.dtype)
return np.expand_dims(x, 0) < np.expand_dims(length, 1)
def generate_path(duration, mask):
"""
duration: [b, 1, t_x]
mask: [b, 1, t_y, t_x]
"""
b, _, t_y, t_x = mask.shape
cum_duration = np.cumsum(duration, -1)
cum_duration_flat = cum_duration.reshape(b * t_x)
path = sequence_mask(cum_duration_flat, t_y)
path = path.reshape(b, t_x, t_y)
path = path ^ np.pad(path, ((0, 0), (1, 0), (0, 0)))[:, :-1]
path = np.expand_dims(path, 1).transpose(0, 1, 3, 2)
return path
class InferenceSession:
def __init__(self, path, Providers=["CPUExecutionProvider"]):
ort_config = ort.SessionOptions()
ort_config.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
ort_config.intra_op_num_threads = 4
ort_config.inter_op_num_threads = 4
self.enc = ort.InferenceSession(path["enc"], providers=Providers, sess_options=ort_config)
self.emb_g = ort.InferenceSession(path["emb_g"], providers=Providers, sess_options=ort_config)
self.dp = ort.InferenceSession(path["dp"], providers=Providers, sess_options=ort_config)
self.sdp = ort.InferenceSession(path["sdp"], providers=Providers, sess_options=ort_config)
# flow模型用onnx比rknn快
# self.flow = RKNNLite(verbose=False)
# self.flow.load_rknn(path["flow"])
# self.flow.init_runtime(core_mask=RKNNLite.NPU_CORE_1)
self.flow = ort.InferenceSession(path["flow"], providers=Providers, sess_options=ort_config)
self.dec = RKNNLite(verbose=False)
self.dec.load_rknn(path["dec"])
self.dec.init_runtime()
# self.dec = ort.InferenceSession(path["dec"], providers=Providers, sess_options=ort_config)
def __call__(
self,
seq,
tone,
language,
bert_zh,
bert_jp,
bert_en,
vqidx,
sid,
seed=114514,
seq_noise_scale=0.8,
sdp_noise_scale=0.6,
length_scale=1.0,
sdp_ratio=0.0,
rknn_pad_to = 1024
):
if seq.ndim == 1:
seq = np.expand_dims(seq, 0)
if tone.ndim == 1:
tone = np.expand_dims(tone, 0)
if language.ndim == 1:
language = np.expand_dims(language, 0)
assert (seq.ndim == 2, tone.ndim == 2, language.ndim == 2)
start_time = time.time()
g = self.emb_g.run(
None,
{
"sid": sid.astype(np.int64),
},
)[0]
emb_g_time = time.time() - start_time
print(f"emb_g 运行时间: {emb_g_time:.4f} 秒")
g = np.expand_dims(g, -1)
start_time = time.time()
enc_rtn = self.enc.run(
None,
{
"x": seq.astype(np.int64),
"t": tone.astype(np.int64),
"language": language.astype(np.int64),
"bert_0": bert_zh.astype(np.float32),
"bert_1": bert_jp.astype(np.float32),
"bert_2": bert_en.astype(np.float32),
"g": g.astype(np.float32),
# 2.3版本的模型需要注释掉下面两行
"vqidx": vqidx.astype(np.int64),
"sid": sid.astype(np.int64),
},
)
enc_time = time.time() - start_time
print(f"enc 运行时间: {enc_time:.4f} 秒")
x, m_p, logs_p, x_mask = enc_rtn[0], enc_rtn[1], enc_rtn[2], enc_rtn[3]
np.random.seed(seed)
zinput = np.random.randn(x.shape[0], 2, x.shape[2]) * sdp_noise_scale
start_time = time.time()
sdp_output = self.sdp.run(
None, {"x": x, "x_mask": x_mask, "zin": zinput.astype(np.float32), "g": g}
)[0]
sdp_time = time.time() - start_time
print(f"sdp 运行时间: {sdp_time:.4f} 秒")
start_time = time.time()
dp_output = self.dp.run(None, {"x": x, "x_mask": x_mask, "g": g})[0]
dp_time = time.time() - start_time
print(f"dp 运行时间: {dp_time:.4f} 秒")
logw = sdp_output * (sdp_ratio) + dp_output * (1 - sdp_ratio)
w = np.exp(logw) * x_mask * length_scale
w_ceil = np.ceil(w)
y_lengths = np.clip(np.sum(w_ceil, (1, 2)), a_min=1.0, a_max=100000).astype(
np.int64
)
y_mask = np.expand_dims(sequence_mask(y_lengths, None), 1)
attn_mask = np.expand_dims(x_mask, 2) * np.expand_dims(y_mask, -1)
attn = generate_path(w_ceil, attn_mask)
m_p = np.matmul(attn.squeeze(1), m_p.transpose(0, 2, 1)).transpose(
0, 2, 1
) # [b, t', t], [b, t, d] -> [b, d, t']
logs_p = np.matmul(attn.squeeze(1), logs_p.transpose(0, 2, 1)).transpose(
0, 2, 1
) # [b, t', t], [b, t, d] -> [b, d, t']
z_p = (
m_p
+ np.random.randn(m_p.shape[0], m_p.shape[1], m_p.shape[2])
* np.exp(logs_p)
* seq_noise_scale
)
#truncate to rknn_pad_to
actual_len = z_p.shape[2]
if actual_len > rknn_pad_to:
print("警告, 输入长度超过 rknn_pad_to, 将被截断")
z_p = z_p[:,:,:rknn_pad_to]
y_mask = y_mask[:,:,:rknn_pad_to]
else:
z_p = np.pad(z_p, ((0, 0), (0, 0), (0, rknn_pad_to - z_p.shape[2])))
y_mask = np.pad(y_mask, ((0, 0), (0, 0), (0, rknn_pad_to - y_mask.shape[2])))
start_time = time.time()
z = self.flow.run(
None,
{
"z_p": z_p.astype(np.float32),
"y_mask": y_mask.astype(np.float32),
"g": g,
},
)[0]
flow_time = time.time() - start_time
print(f"flow 运行时间: {flow_time:.4f} 秒")
start_time = time.time()
dec_output = self.dec.inference([z.astype(np.float32), g])[0]
dec_time = time.time() - start_time
print(f"dec 运行时间: {dec_time:.4f} 秒")
# truncate to actual_len*512
return dec_output[:,:,:actual_len*512]
class ToneSandhi:
def __init__(self):
self.must_neural_tone_words = {
"麻烦",
"麻利",
"鸳鸯",
"高粱",
"骨头",
"骆驼",
"马虎",
"首饰",
"馒头",
"馄饨",
"风筝",
"难为",
"队伍",
"阔气",
"闺女",
"门道",
"锄头",
"铺盖",
"铃铛",
"铁匠",
"钥匙",
"里脊",
"里头",
"部分",
"那么",
"道士",
"造化",
"迷糊",
"连累",
"这么",
"这个",
"运气",
"过去",
"软和",
"转悠",
"踏实",
"跳蚤",
"跟头",
"趔趄",
"财主",
"豆腐",
"讲究",
"记性",
"记号",
"认识",
"规矩",
"见识",
"裁缝",
"补丁",
"衣裳",
"衣服",
"衙门",
"街坊",
"行李",
"行当",
"蛤蟆",
"蘑菇",
"薄荷",
"葫芦",
"葡萄",
"萝卜",
"荸荠",
"苗条",
"苗头",
"苍蝇",
"芝麻",
"舒服",
"舒坦",
"舌头",
"自在",
"膏药",
"脾气",
"脑袋",
"脊梁",
"能耐",
"胳膊",
"胭脂",
"胡萝",
"胡琴",
"胡同",
"聪明",
"耽误",
"耽搁",
"耷拉",
"耳朵",
"老爷",
"老实",
"老婆",
"老头",
"老太",
"翻腾",
"罗嗦",
"罐头",
"编辑",
"结实",
"红火",
"累赘",
"糨糊",
"糊涂",
"精神",
"粮食",
"簸箕",
"篱笆",
"算计",
"算盘",
"答应",
"笤帚",
"笑语",
"笑话",
"窟窿",
"窝囊",
"窗户",
"稳当",
"稀罕",
"称呼",
"秧歌",
"秀气",
"秀才",
"福气",
"祖宗",
"砚台",
"码头",
"石榴",
"石头",
"石匠",
"知识",
"眼睛",
"眯缝",
"眨巴",
"眉毛",
"相声",
"盘算",
"白净",
"痢疾",
"痛快",
"疟疾",
"疙瘩",
"疏忽",
"畜生",
"生意",
"甘蔗",
"琵琶",
"琢磨",
"琉璃",
"玻璃",
"玫瑰",
"玄乎",
"狐狸",
"状元",
"特务",
"牲口",
"牙碜",
"牌楼",
"爽快",
"爱人",
"热闹",
"烧饼",
"烟筒",
"烂糊",
"点心",
"炊帚",
"灯笼",
"火候",
"漂亮",
"滑溜",
"溜达",
"温和",
"清楚",
"消息",
"浪头",
"活泼",
"比方",
"正经",
"欺负",
"模糊",
"槟榔",
"棺材",
"棒槌",
"棉花",
"核桃",
"栅栏",
"柴火",
"架势",
"枕头",
"枇杷",
"机灵",
"本事",
"木头",
"木匠",
"朋友",
"月饼",
"月亮",
"暖和",
"明白",
"时候",
"新鲜",
"故事",
"收拾",
"收成",
"提防",
"挖苦",
"挑剔",
"指甲",
"指头",
"拾掇",
"拳头",
"拨弄",
"招牌",
"招呼",
"抬举",
"护士",
"折腾",
"扫帚",
"打量",
"打算",
"打点",
"打扮",
"打听",
"打发",
"扎实",
"扁担",
"戒指",
"懒得",
"意识",
"意思",
"情形",
"悟性",
"怪物",
"思量",
"怎么",
"念头",
"念叨",
"快活",
"忙活",
"志气",
"心思",
"得罪",
"张罗",
"弟兄",
"开通",
"应酬",
"庄稼",
"干事",
"帮手",
"帐篷",
"希罕",
"师父",
"师傅",
"巴结",
"巴掌",
"差事",
"工夫",
"岁数",
"屁股",
"尾巴",
"少爷",
"小气",
"小伙",
"将就",
"对头",
"对付",
"寡妇",
"家伙",
"客气",
"实在",
"官司",
"学问",
"学生",
"字号",
"嫁妆",
"媳妇",
"媒人",
"婆家",
"娘家",
"委屈",
"姑娘",
"姐夫",
"妯娌",
"妥当",
"妖精",
"奴才",
"女婿",
"头发",
"太阳",
"大爷",
"大方",
"大意",
"大夫",
"多少",
"多么",
"外甥",
"壮实",
"地道",
"地方",
"在乎",
"困难",
"嘴巴",
"嘱咐",
"嘟囔",
"嘀咕",
"喜欢",
"喇嘛",
"喇叭",
"商量",
"唾沫",
"哑巴",
"哈欠",
"哆嗦",
"咳嗽",
"和尚",
"告诉",
"告示",
"含糊",
"吓唬",
"后头",
"名字",
"名堂",
"合同",
"吆喝",
"叫唤",
"口袋",
"厚道",
"厉害",
"千斤",
"包袱",
"包涵",
"匀称",
"勤快",
"动静",
"动弹",
"功夫",
"力气",
"前头",
"刺猬",
"刺激",
"别扭",
"利落",
"利索",
"利害",
"分析",
"出息",
"凑合",
"凉快",
"冷战",
"冤枉",
"冒失",
"养活",
"关系",
"先生",
"兄弟",
"便宜",
"使唤",
"佩服",
"作坊",
"体面",
"位置",
"似的",
"伙计",
"休息",
"什么",
"人家",
"亲戚",
"亲家",
"交情",
"云彩",
"事情",
"买卖",
"主意",
"丫头",
"丧气",
"两口",
"东西",
"东家",
"世故",
"不由",
"不在",
"下水",
"下巴",
"上头",
"上司",
"丈夫",
"丈人",
"一辈",
"那个",
"菩萨",
"父亲",
"母亲",
"咕噜",
"邋遢",
"费用",
"冤家",
"甜头",
"介绍",
"荒唐",
"大人",
"泥鳅",
"幸福",
"熟悉",
"计划",
"扑腾",
"蜡烛",
"姥爷",
"照顾",
"喉咙",
"吉他",
"弄堂",
"蚂蚱",
"凤凰",
"拖沓",
"寒碜",
"糟蹋",
"倒腾",
"报复",
"逻辑",
"盘缠",
"喽啰",
"牢骚",
"咖喱",
"扫把",
"惦记",
}
self.must_not_neural_tone_words = {
"男子",
"女子",
"分子",
"原子",
"量子",
"莲子",
"石子",
"瓜子",
"电子",
"人人",
"虎虎",
}
self.punc = ":,;。?!“”‘’':,;.?!"
# the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041
# e.g.
# word: "家里"
# pos: "s"
# finals: ['ia1', 'i3']
def _neural_sandhi(self, word: str, pos: str, finals: List[str]) -> List[str]:
# reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
for j, item in enumerate(word):
if (
j - 1 >= 0
and item == word[j - 1]
and pos[0] in {"n", "v", "a"}
and word not in self.must_not_neural_tone_words
):
finals[j] = finals[j][:-1] + "5"
ge_idx = word.find("个")
if len(word) >= 1 and word[-1] in "吧呢啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
finals[-1] = finals[-1][:-1] + "5"
elif len(word) >= 1 and word[-1] in "的地得":
finals[-1] = finals[-1][:-1] + "5"
# e.g. 走了, 看着, 去过
# elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
# finals[-1] = finals[-1][:-1] + "5"
elif (
len(word) > 1
and word[-1] in "们子"
and pos in {"r", "n"}
and word not in self.must_not_neural_tone_words
):
finals[-1] = finals[-1][:-1] + "5"
# e.g. 桌上, 地下, 家里
elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
finals[-1] = finals[-1][:-1] + "5"
# e.g. 上来, 下去
elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
finals[-1] = finals[-1][:-1] + "5"
# 个做量词
elif (
ge_idx >= 1
and (
word[ge_idx - 1].isnumeric()
or word[ge_idx - 1] in "几有两半多各整每做是"
)
) or word == "个":
finals[ge_idx] = finals[ge_idx][:-1] + "5"
else:
if (
word in self.must_neural_tone_words
or word[-2:] in self.must_neural_tone_words
):
finals[-1] = finals[-1][:-1] + "5"
word_list = self._split_word(word)
finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
for i, word in enumerate(word_list):
# conventional neural in Chinese
if (
word in self.must_neural_tone_words
or word[-2:] in self.must_neural_tone_words
):
finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
finals = sum(finals_list, [])
return finals
def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]:
# e.g. 看不懂
if len(word) == 3 and word[1] == "不":
finals[1] = finals[1][:-1] + "5"
else:
for i, char in enumerate(word):
# "不" before tone4 should be bu2, e.g. 不怕
if char == "不" and i + 1 < len(word) and finals[i + 1][-1] == "4":
finals[i] = finals[i][:-1] + "2"
return finals
def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
# "一" in number sequences, e.g. 一零零, 二一零
if word.find("一") != -1 and all(
[item.isnumeric() for item in word if item != "一"]
):
return finals
# "一" between reduplication words should be yi5, e.g. 看一看
elif len(word) == 3 and word[1] == "一" and word[0] == word[-1]:
finals[1] = finals[1][:-1] + "5"
# when "一" is ordinal word, it should be yi1
elif word.startswith("第一"):
finals[1] = finals[1][:-1] + "1"
else:
for i, char in enumerate(word):
if char == "一" and i + 1 < len(word):
# "一" before tone4 should be yi2, e.g. 一段
if finals[i + 1][-1] == "4":
finals[i] = finals[i][:-1] + "2"
# "一" before non-tone4 should be yi4, e.g. 一天
else:
# "一" 后面如果是标点,还读一声
if word[i + 1] not in self.punc:
finals[i] = finals[i][:-1] + "4"
return finals
def _split_word(self, word: str) -> List[str]:
word_list = jieba.cut_for_search(word)
word_list = sorted(word_list, key=lambda i: len(i), reverse=False)
first_subword = word_list[0]
first_begin_idx = word.find(first_subword)
if first_begin_idx == 0:
second_subword = word[len(first_subword) :]
new_word_list = [first_subword, second_subword]
else:
second_subword = word[: -len(first_subword)]
new_word_list = [second_subword, first_subword]
return new_word_list
def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
if len(word) == 2 and self._all_tone_three(finals):
finals[0] = finals[0][:-1] + "2"
elif len(word) == 3:
word_list = self._split_word(word)
if self._all_tone_three(finals):
# disyllabic + monosyllabic, e.g. 蒙古/包
if len(word_list[0]) == 2:
finals[0] = finals[0][:-1] + "2"
finals[1] = finals[1][:-1] + "2"
# monosyllabic + disyllabic, e.g. 纸/老虎
elif len(word_list[0]) == 1:
finals[1] = finals[1][:-1] + "2"
else:
finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
if len(finals_list) == 2:
for i, sub in enumerate(finals_list):
# e.g. 所有/人
if self._all_tone_three(sub) and len(sub) == 2:
finals_list[i][0] = finals_list[i][0][:-1] + "2"
# e.g. 好/喜欢
elif (
i == 1
and not self._all_tone_three(sub)
and finals_list[i][0][-1] == "3"
and finals_list[0][-1][-1] == "3"
):
finals_list[0][-1] = finals_list[0][-1][:-1] + "2"
finals = sum(finals_list, [])
# split idiom into two words who's length is 2
elif len(word) == 4:
finals_list = [finals[:2], finals[2:]]
finals = []
for sub in finals_list:
if self._all_tone_three(sub):
sub[0] = sub[0][:-1] + "2"
finals += sub
return finals
def _all_tone_three(self, finals: List[str]) -> bool:
return all(x[-1] == "3" for x in finals)
# merge "不" and the word behind it
# if don't merge, "不" sometimes appears alone according to jieba, which may occur sandhi error
def _merge_bu(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
new_seg = []
last_word = ""
for word, pos in seg:
if last_word == "不":
word = last_word + word
if word != "不":
new_seg.append((word, pos))
last_word = word[:]
if last_word == "不":
new_seg.append((last_word, "d"))
last_word = ""
return new_seg
# function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听"
# function 2: merge single "一" and the word behind it
# if don't merge, "一" sometimes appears alone according to jieba, which may occur sandhi error
# e.g.
# input seg: [('听', 'v'), ('一', 'm'), ('听', 'v')]
# output seg: [['听一听', 'v']]
def _merge_yi(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
new_seg = []
# function 1
for i, (word, pos) in enumerate(seg):
if (
i - 1 >= 0
and word == "一"
and i + 1 < len(seg)
and seg[i - 1][0] == seg[i + 1][0]
and seg[i - 1][1] == "v"
):
new_seg[i - 1][0] = new_seg[i - 1][0] + "一" + new_seg[i - 1][0]
else:
if (
i - 2 >= 0
and seg[i - 1][0] == "一"
and seg[i - 2][0] == word
and pos == "v"
):
continue
else:
new_seg.append([word, pos])
seg = new_seg
new_seg = []
# function 2
for i, (word, pos) in enumerate(seg):
if new_seg and new_seg[-1][0] == "一":
new_seg[-1][0] = new_seg[-1][0] + word
else:
new_seg.append([word, pos])
return new_seg
# the first and the second words are all_tone_three
def _merge_continuous_three_tones(
self, seg: List[Tuple[str, str]]
) -> List[Tuple[str, str]]:
new_seg = []
sub_finals_list = [
lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
for (word, pos) in seg
]
assert len(sub_finals_list) == len(seg)
merge_last = [False] * len(seg)
for i, (word, pos) in enumerate(seg):
if (
i - 1 >= 0
and self._all_tone_three(sub_finals_list[i - 1])
and self._all_tone_three(sub_finals_list[i])
and not merge_last[i - 1]
):
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
if (
not self._is_reduplication(seg[i - 1][0])
and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
):
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
merge_last[i] = True
else:
new_seg.append([word, pos])
else:
new_seg.append([word, pos])
return new_seg
def _is_reduplication(self, word: str) -> bool:
return len(word) == 2 and word[0] == word[1]
# the last char of first word and the first char of second word is tone_three
def _merge_continuous_three_tones_2(
self, seg: List[Tuple[str, str]]
) -> List[Tuple[str, str]]:
new_seg = []
sub_finals_list = [
lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
for (word, pos) in seg
]
assert len(sub_finals_list) == len(seg)
merge_last = [False] * len(seg)
for i, (word, pos) in enumerate(seg):
if (
i - 1 >= 0
and sub_finals_list[i - 1][-1][-1] == "3"
and sub_finals_list[i][0][-1] == "3"
and not merge_last[i - 1]
):
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
if (
not self._is_reduplication(seg[i - 1][0])
and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
):
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
merge_last[i] = True
else:
new_seg.append([word, pos])
else:
new_seg.append([word, pos])
return new_seg
def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
new_seg = []
for i, (word, pos) in enumerate(seg):
if i - 1 >= 0 and word == "儿" and seg[i - 1][0] != "#":
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
else:
new_seg.append([word, pos])
return new_seg
def _merge_reduplication(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
new_seg = []
for i, (word, pos) in enumerate(seg):
if new_seg and word == new_seg[-1][0]:
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
else:
new_seg.append([word, pos])
return new_seg
def pre_merge_for_modify(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
seg = self._merge_bu(seg)
try:
seg = self._merge_yi(seg)
except:
print("_merge_yi failed")
seg = self._merge_reduplication(seg)
seg = self._merge_continuous_three_tones(seg)
seg = self._merge_continuous_three_tones_2(seg)
seg = self._merge_er(seg)
return seg
def modified_tone(self, word: str, pos: str, finals: List[str]) -> List[str]:
finals = self._bu_sandhi(word, finals)
finals = self._yi_sandhi(word, finals)
finals = self._neural_sandhi(word, pos, finals)
finals = self._three_sandhi(word, finals)
return finals
punctuation = ["!", "?", "…", ",", ".", "'", "-"]
pu_symbols = punctuation + ["SP", "UNK"]
pad = "_"
# chinese
zh_symbols = [
"E",
"En",
"a",
"ai",
"an",
"ang",
"ao",
"b",
"c",
"ch",
"d",
"e",
"ei",
"en",
"eng",
"er",
"f",
"g",
"h",
"i",
"i0",
"ia",
"ian",
"iang",
"iao",
"ie",
"in",
"ing",
"iong",
"ir",
"iu",
"j",
"k",
"l",
"m",
"n",
"o",
"ong",
"ou",
"p",
"q",
"r",
"s",
"sh",
"t",
"u",
"ua",
"uai",
"uan",
"uang",
"ui",
"un",
"uo",
"v",
"van",
"ve",
"vn",
"w",
"x",
"y",
"z",
"zh",
"AA",
"EE",
"OO",
]
num_zh_tones = 6
# japanese
ja_symbols = [
"N",
"a",
"a:",
"b",
"by",
"ch",
"d",
"dy",
"e",
"e:",
"f",
"g",
"gy",
"h",
"hy",
"i",
"i:",
"j",
"k",
"ky",
"m",
"my",
"n",
"ny",
"o",
"o:",
"p",
"py",
"q",
"r",
"ry",
"s",
"sh",
"t",
"ts",
"ty",
"u",
"u:",
"w",
"y",
"z",
"zy",
]
num_ja_tones = 2
# English
en_symbols = [
"aa",
"ae",
"ah",
"ao",
"aw",
"ay",
"b",
"ch",
"d",
"dh",
"eh",
"er",
"ey",
"f",
"g",
"hh",
"ih",
"iy",
"jh",
"k",
"l",
"m",
"n",
"ng",
"ow",
"oy",
"p",
"r",
"s",
"sh",
"t",
"th",
"uh",
"uw",
"V",
"w",
"y",
"z",
"zh",
]
num_en_tones = 4
# combine all symbols
normal_symbols = sorted(set(zh_symbols + ja_symbols + en_symbols))
symbols = [pad] + normal_symbols + pu_symbols
sil_phonemes_ids = [symbols.index(i) for i in pu_symbols]
# combine all tones
num_tones = num_zh_tones + num_ja_tones + num_en_tones
# language maps
language_id_map = {"ZH": 0, "JP": 1, "EN": 2}
num_languages = len(language_id_map.keys())
language_tone_start_map = {
"ZH": 0,
"JP": num_zh_tones,
"EN": num_zh_tones + num_ja_tones,
}
current_file_path = os.path.dirname(__file__)
pinyin_to_symbol_map = {
line.split("\t")[0]: line.strip().split("\t")[1]
for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
}
rep_map = {
":": ",",
";": ",",
",": ",",
"。": ".",
"!": "!",
"?": "?",
"\n": ".",
"·": ",",
"、": ",",
"...": "…",
"$": ".",
"“": "'",
"”": "'",
'"': "'",
"‘": "'",
"’": "'",
"(": "'",
")": "'",
"(": "'",
")": "'",
"《": "'",
"》": "'",
"【": "'",
"】": "'",
"[": "'",
"]": "'",
"—": "-",
"~": "-",
"~": "-",
"「": "'",
"」": "'",
}
tone_modifier = ToneSandhi()
def replace_punctuation(text):
text = text.replace("嗯", "恩").replace("呣", "母")
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
replaced_text = re.sub(
r"[^\u4e00-\u9fa5" + "".join(punctuation) + r"]+", "", replaced_text
)
return replaced_text
def g2p(text):
pattern = r"(?<=[{0}])\s*".format("".join(punctuation))
sentences = [i for i in re.split(pattern, text) if i.strip() != ""]
phones, tones, word2ph = _g2p(sentences)
assert sum(word2ph) == len(phones)
assert len(word2ph) == len(text) # Sometimes it will crash,you can add a try-catch.
phones = ["_"] + phones + ["_"]
tones = [0] + tones + [0]
word2ph = [1] + word2ph + [1]
return phones, tones, word2ph
def _get_initials_finals(word):
initials = []
finals = []
orig_initials = lazy_pinyin(word, neutral_tone_with_five=True, style=Style.INITIALS)
orig_finals = lazy_pinyin(
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3
)
for c, v in zip(orig_initials, orig_finals):
initials.append(c)
finals.append(v)
return initials, finals
def _g2p(segments):
phones_list = []
tones_list = []
word2ph = []
for seg in segments:
# Replace all English words in the sentence
seg = re.sub("[a-zA-Z]+", "", seg)
seg_cut = psg.lcut(seg)
initials = []
finals = []
seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
for word, pos in seg_cut:
if pos == "eng":
continue
sub_initials, sub_finals = _get_initials_finals(word)
sub_finals = tone_modifier.modified_tone(word, pos, sub_finals)
initials.append(sub_initials)
finals.append(sub_finals)
# assert len(sub_initials) == len(sub_finals) == len(word)
initials = sum(initials, [])
finals = sum(finals, [])
#
for c, v in zip(initials, finals):
raw_pinyin = c + v
# NOTE: post process for pypinyin outputs
# we discriminate i, ii and iii
if c == v:
assert c in punctuation
phone = [c]
tone = "0"
word2ph.append(1)
else:
v_without_tone = v[:-1]
tone = v[-1]
pinyin = c + v_without_tone
assert tone in "12345"
if c:
# 多音节
v_rep_map = {
"uei": "ui",
"iou": "iu",
"uen": "un",
}
if v_without_tone in v_rep_map.keys():
pinyin = c + v_rep_map[v_without_tone]
else:
# 单音节
pinyin_rep_map = {
"ing": "ying",
"i": "yi",
"in": "yin",
"u": "wu",
}
if pinyin in pinyin_rep_map.keys():
pinyin = pinyin_rep_map[pinyin]
else:
single_rep_map = {
"v": "yu",
"e": "e",
"i": "y",
"u": "w",
}
if pinyin[0] in single_rep_map.keys():
pinyin = single_rep_map[pinyin[0]] + pinyin[1:]
assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
phone = pinyin_to_symbol_map[pinyin].split(" ")
word2ph.append(len(phone))
phones_list += phone
tones_list += [int(tone)] * len(phone)
return phones_list, tones_list, word2ph
def text_normalize(text):
numbers = re.findall(r"\d+(?:\.?\d+)?", text)
for number in numbers:
text = text.replace(number, cn2an.an2cn(number), 1)
text = replace_punctuation(text)
return text
def get_bert_feature(
text,
word2ph,
style_text=None,
style_weight=0.7,
):
global bert_model
# 使用tokenizer处理输入文本
inputs = tokenizer(text, return_tensors="np",padding="max_length",truncation=True,max_length=256)
# 运行ONNX模型
start_time = time.time()
res = bert_model.inference([inputs["input_ids"], inputs["attention_mask"], inputs["token_type_ids"]])
flow_time = time.time() - start_time
print(f"bert 运行时间: {flow_time:.4f} 秒")
# 处理输出
# res = np.concatenate(res[0], -1)[0]
res = res[0][0]
if style_text:
assert False # TODO
# style_inputs = tokenizer(style_text, return_tensors="np")
# style_onnx_inputs = {name: style_inputs[name] for name in bert_model.get_inputs()}
# style_res = bert_model.run(None, style_onnx_inputs)
# style_hidden_states = style_res[-1]
# style_res = np.concatenate(style_hidden_states[-3:-2], -1)[0]
# style_res_mean = style_res.mean(0)
assert len(word2ph) == len(text) + 2
word2phone = word2ph
phone_level_feature = []
for i in range(len(word2phone)):
if style_text:
repeat_feature = (
res[i].repeat(word2phone[i], 1) * (1 - style_weight)
# + style_res_mean.repeat(word2phone[i], 1) * style_weight
)
else:
repeat_feature = np.tile(res[i], (word2phone[i], 1))
phone_level_feature.append(repeat_feature)
phone_level_feature = np.concatenate(phone_level_feature, axis=0)
return phone_level_feature.T
def clean_text(text, language):
norm_text = text_normalize(text)
phones, tones, word2ph = g2p(norm_text)
return norm_text, phones, tones, word2ph
def clean_text_bert(text, language):
norm_text = text_normalize(text)
phones, tones, word2ph = g2p(norm_text)
bert = get_bert_feature(norm_text, word2ph)
return phones, tones, bert
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
def cleaned_text_to_sequence(cleaned_text, tones, language):
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
Args:
text: string to convert to a sequence
Returns:
List of integers corresponding to the symbols in the text
"""
phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
tone_start = language_tone_start_map[language]
tones = [i + tone_start for i in tones]
lang_id = language_id_map[language]
lang_ids = [lang_id for i in phones]
return phones, tones, lang_ids
def text_to_sequence(text, language):
norm_text, phones, tones, word2ph = clean_text(text, language)
return cleaned_text_to_sequence(phones, tones, language)
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def get_text(text, language_str, style_text=None, style_weight=0.7, add_blank=False):
# 在此处实现当前版本的get_text
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if add_blank:
phone = intersperse(phone, 0)
tone = intersperse(tone, 0)
language = intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = get_bert_feature(
norm_text, word2ph, style_text, style_weight
)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert_ori
ja_bert = np.zeros((1024, len(phone)))
en_bert = np.zeros((1024, len(phone)))
elif language_str == "JP":
bert = np.zeros((1024, len(phone)))
ja_bert = bert_ori
en_bert = np.zeros((1024, len(phone)))
elif language_str == "EN":
bert = np.zeros((1024, len(phone)))
ja_bert = np.zeros((1024, len(phone)))
en_bert = bert_ori
else:
raise ValueError("language_str should be ZH, JP or EN")
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = np.array(phone)
tone = np.array(tone)
language = np.array(language)
return bert, ja_bert, en_bert, phone, tone, language
if __name__ == "__main__":
name = "lx"
model_prefix = f"onnx/{name}/{name}_"
bert_path = "./bert/chinese-roberta-wwm-ext-large"
flow_dec_input_len = 1024
model_sample_rate = 44100
# text = "不必说碧绿的菜畦,光滑的石井栏,高大的皂荚树,紫红的桑葚;也不必说鸣蝉在树叶里长吟,肥胖的黄蜂伏在菜花上,轻捷的叫天子(云雀)忽然从草间直窜向云霄里去了。单是周围的短短的泥墙根一带,就有无限趣味。油蛉在这里低唱, 蟋蟀们在这里弹琴。翻开断砖来,有时会遇见蜈蚣;还有斑蝥,倘若用手指按住它的脊梁,便会“啪”的一声,从后窍喷出一阵烟雾。何首乌藤和木莲藤缠络着,木莲有莲房一般的果实,何首乌有臃肿的根。有人说,何首乌根是有像人形的,吃了便可以成仙,我于是常常拔它起来,牵连不断地拔起来,也曾因此弄坏了泥墙,却从来没有见过有一块根像人样。如果不怕刺,还可以摘到覆盆子,像小珊瑚珠攒成的小球,又酸又甜,色味都比桑葚要好得远。"
text = "我个人认为,这个意大利面就应该拌42号混凝土,因为这个螺丝钉的长度,它很容易会直接影响到挖掘机的扭矩你知道吧。你往里砸的时候,一瞬间它就会产生大量的高能蛋白,俗称ufo,会严重影响经济的发展,甚至对整个太平洋以及充电器都会造成一定的核污染。你知道啊?再者说,根据这个勾股定理,你可以很容易地推断出人工饲养的东条英机,它是可以捕获野生的三角函数的。所以说这个秦始皇的切面是否具有放射性啊,特朗普的N次方是否含有沉淀物,都不影响这个沃尔玛跟维尔康在南极会合。"
global bert_model,tokenizer
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = RKNNLite(verbose=False)
bert_model.load_rknn(bert_path + "/model.rknn")
bert_model.init_runtime()
model = InferenceSession({
"enc": model_prefix + "enc_p.onnx",
"emb_g": model_prefix + "emb.onnx",
"dp": model_prefix + "dp.onnx",
"sdp": model_prefix + "sdp.onnx",
"flow": model_prefix + "flow.onnx",
"dec": model_prefix + "dec.rknn",
})
# 从句号分割
text_seg = re.split(r'(?<=[。!?;])', text)
output_acc = np.array([0.0])
for text in text_seg:
bert, ja_bert, en_bert, phone, tone, language = get_text(text, "ZH", add_blank=True)
bert = np.transpose(bert)
ja_bert = np.transpose(ja_bert)
en_bert = np.transpose(en_bert)
sid = np.array([0])
vqidx = np.array([0])
output = model(phone, tone, language, bert, ja_bert, en_bert, vqidx, sid ,
rknn_pad_to=flow_dec_input_len,
seed=114514,
seq_noise_scale=0.8,
sdp_noise_scale=0.6,
length_scale=1,
sdp_ratio=0,
)[0,0]
output_acc = np.concatenate([output_acc, output])
print(f"已生成长度: {len(output_acc) / model_sample_rate:.2f} 秒")
sf.write('output.wav', output_acc, model_sample_rate)
print("已生成output.wav") |