happyme531
commited on
Commit
•
6cec077
1
Parent(s):
06b7a27
Upload 13 files
Browse files- .gitattributes +2 -0
- README.md +59 -3
- onnx/lx.json +147 -0
- onnx/lx/lx_dec.onnx +3 -0
- onnx/lx/lx_dec.rknn +3 -0
- onnx/lx/lx_dp.onnx +3 -0
- onnx/lx/lx_emb.onnx +3 -0
- onnx/lx/lx_enc_p.onnx +3 -0
- onnx/lx/lx_flow.onnx +3 -0
- onnx/lx/lx_flow.rknn +3 -0
- onnx/lx/lx_sdp.onnx +3 -0
- onnx/lx/rknn_convert.py +111 -0
- opencpop-strict.txt +429 -0
- rknn_run.py +1469 -0
.gitattributes
CHANGED
@@ -34,3 +34,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
bert/chinese-roberta-wwm-ext-large/model.rknn filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
bert/chinese-roberta-wwm-ext-large/model.rknn filter=lfs diff=lfs merge=lfs -text
|
37 |
+
onnx/lx/lx_dec.rknn filter=lfs diff=lfs merge=lfs -text
|
38 |
+
onnx/lx/lx_flow.rknn filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,59 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Bert-VITS2-RKNN2
|
2 |
+
|
3 |
+
RKNN2部署Bert-VITS2文字转语音模型!
|
4 |
+
|
5 |
+
- 推理速度:生成512000个样本大概用时2.6秒,速度大概3倍
|
6 |
+
- 内存占用:约2.3GB
|
7 |
+
|
8 |
+
## 使用方法
|
9 |
+
|
10 |
+
1. 克隆项目到本地
|
11 |
+
|
12 |
+
2. 安装依赖
|
13 |
+
|
14 |
+
```bash
|
15 |
+
# 懒得写requirements.txt了,看rknn_run.py里有什么依赖拿pip安装一下
|
16 |
+
```
|
17 |
+
|
18 |
+
3. 更改你想要生成音频的文字
|
19 |
+
打开`rknn_run.py`,拉到最下方修改`text`变量
|
20 |
+
```python
|
21 |
+
# text = "不必说碧绿的菜畦,光滑的石井栏,高大的皂荚树,紫红的桑葚;也不必说鸣蝉在树叶里长吟,肥胖的黄蜂伏在菜花上,轻捷的叫天子(云雀)忽然从草间直窜向云霄里去了。单是周围的短短的泥墙根一带,就有无限趣味。油蛉在这里低唱, 蟋蟀们在这里弹琴。翻开断砖来,有时会遇见蜈蚣;还有斑蝥,倘若用手指按住它的脊梁,便会“啪”的一声,从后窍喷出一阵烟雾。何首乌藤和木莲藤缠络着,木莲有莲房一般的果实,何首乌有臃肿的根。有人说,何首乌根是有像人形的,吃了便可以成仙,我于是常常拔它起来,牵连不断地拔起来,也曾因此弄坏了泥墙,却从来没有见过有一块根像人样。如果不怕刺,还可以摘到覆盆子,像小珊瑚珠攒成的小球,又酸又甜,色味都比桑葚要好得远。"
|
22 |
+
text = "我个人认为,这个意大利面就应该拌42号混凝土,因为这个螺丝钉的长度,它很容易会直接影响到挖掘机的扭矩你知道吧。你往里砸的时候,一瞬间它就会产生大量的高能蛋白,俗称ufo,会严重影响经济的发展,甚至对整个太平洋以及充电器都会造成一定的核污染。你知道啊?再者说,根据这个勾股定理,你可以很容易地推断出人工饲养的东条英机,它是可以捕获野生的三角函数的。所以说这个秦始皇的切面是否具有放射性啊,特朗普的N次方是否含有沉淀物,都不影响这个沃尔玛跟维尔康在南极会合。"
|
23 |
+
```
|
24 |
+
|
25 |
+
4. 运行
|
26 |
+
|
27 |
+
```bash
|
28 |
+
python rknn_run.py
|
29 |
+
```
|
30 |
+
|
31 |
+
5. 音频会生成为`output.wav`
|
32 |
+
|
33 |
+
## 模型转换
|
34 |
+
|
35 |
+
- 转换bert模型:
|
36 |
+
+ pytorch转onnx: 执行`optimum-cli export onnx --task feature-extraction --model bert/chinese-roberta-wwm-ext-large/ --output bert/chinese-roberta-wwm-ext-large/model.onnx`
|
37 |
+
+ onnx转rknn: 参考`bert/chinese-roberta-wwm-ext-large/export_rknn.py`
|
38 |
+
+ 注意模型的`seq_len`是否与`rknn_run.py`中分词器的`max_length`一致
|
39 |
+
```python
|
40 |
+
inputs = tokenizer(text, return_tensors="np",padding="max_length",truncation=True,max_length=256)
|
41 |
+
```
|
42 |
+
- 转换vits模型:
|
43 |
+
+ pytorch转onnx: 参考原项目的`export_onnx.py`
|
44 |
+
+ onnx转rknn: 参考`onnx/lx/rknn_convert.py`
|
45 |
+
+ 注意`input_len`是否与`rknn_run.py`中`flow_dec_input_len`的长度一致
|
46 |
+
+ flow和dec两个模型的执行时间长, 其它模型非常快, 不需要转换
|
47 |
+
+ flow模型转换后比原onnx模型还慢, 并且貌似模型文件还会明显变大, 不建议转换
|
48 |
+
|
49 |
+
## 存在的问题
|
50 |
+
- 只支持中文
|
51 |
+
- flow模型没办法有效的使用NPU加速
|
52 |
+
- 由于NPU只能处理固定长度的输入, 所以需要分割文本, 但是现在貌似还不太清楚怎么做, 有时一句话还没读完就被截断
|
53 |
+
- 没有实现情感控制等功能
|
54 |
+
- 其实没必要为了分词器安装一个完整的huggingface Transformers库, 并且还要顺便装一个完全没用的pytorch, 占用2GB空间
|
55 |
+
|
56 |
+
## 参考
|
57 |
+
- [Bert-VITS2](https://github.com/fishaudio/Bert-VITS2)
|
58 |
+
- [chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large)
|
59 |
+
- [optimum](https://github.com/huggingface/optimum)
|
onnx/lx.json
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"Folder": "lx",
|
3 |
+
"Name": "lx",
|
4 |
+
"Type": "BertVits",
|
5 |
+
"Symbol": [
|
6 |
+
"_",
|
7 |
+
"AA",
|
8 |
+
"E",
|
9 |
+
"EE",
|
10 |
+
"En",
|
11 |
+
"N",
|
12 |
+
"OO",
|
13 |
+
"V",
|
14 |
+
"a",
|
15 |
+
"a:",
|
16 |
+
"aa",
|
17 |
+
"ae",
|
18 |
+
"ah",
|
19 |
+
"ai",
|
20 |
+
"an",
|
21 |
+
"ang",
|
22 |
+
"ao",
|
23 |
+
"aw",
|
24 |
+
"ay",
|
25 |
+
"b",
|
26 |
+
"by",
|
27 |
+
"c",
|
28 |
+
"ch",
|
29 |
+
"d",
|
30 |
+
"dh",
|
31 |
+
"dy",
|
32 |
+
"e",
|
33 |
+
"e:",
|
34 |
+
"eh",
|
35 |
+
"ei",
|
36 |
+
"en",
|
37 |
+
"eng",
|
38 |
+
"er",
|
39 |
+
"ey",
|
40 |
+
"f",
|
41 |
+
"g",
|
42 |
+
"gy",
|
43 |
+
"h",
|
44 |
+
"hh",
|
45 |
+
"hy",
|
46 |
+
"i",
|
47 |
+
"i0",
|
48 |
+
"i:",
|
49 |
+
"ia",
|
50 |
+
"ian",
|
51 |
+
"iang",
|
52 |
+
"iao",
|
53 |
+
"ie",
|
54 |
+
"ih",
|
55 |
+
"in",
|
56 |
+
"ing",
|
57 |
+
"iong",
|
58 |
+
"ir",
|
59 |
+
"iu",
|
60 |
+
"iy",
|
61 |
+
"j",
|
62 |
+
"jh",
|
63 |
+
"k",
|
64 |
+
"ky",
|
65 |
+
"l",
|
66 |
+
"m",
|
67 |
+
"my",
|
68 |
+
"n",
|
69 |
+
"ng",
|
70 |
+
"ny",
|
71 |
+
"o",
|
72 |
+
"o:",
|
73 |
+
"ong",
|
74 |
+
"ou",
|
75 |
+
"ow",
|
76 |
+
"oy",
|
77 |
+
"p",
|
78 |
+
"py",
|
79 |
+
"q",
|
80 |
+
"r",
|
81 |
+
"ry",
|
82 |
+
"s",
|
83 |
+
"sh",
|
84 |
+
"t",
|
85 |
+
"th",
|
86 |
+
"ts",
|
87 |
+
"ty",
|
88 |
+
"u",
|
89 |
+
"u:",
|
90 |
+
"ua",
|
91 |
+
"uai",
|
92 |
+
"uan",
|
93 |
+
"uang",
|
94 |
+
"uh",
|
95 |
+
"ui",
|
96 |
+
"un",
|
97 |
+
"uo",
|
98 |
+
"uw",
|
99 |
+
"v",
|
100 |
+
"van",
|
101 |
+
"ve",
|
102 |
+
"vn",
|
103 |
+
"w",
|
104 |
+
"x",
|
105 |
+
"y",
|
106 |
+
"z",
|
107 |
+
"zh",
|
108 |
+
"zy",
|
109 |
+
"!",
|
110 |
+
"?",
|
111 |
+
"\u2026",
|
112 |
+
",",
|
113 |
+
".",
|
114 |
+
"'",
|
115 |
+
"-",
|
116 |
+
"SP",
|
117 |
+
"UNK"
|
118 |
+
],
|
119 |
+
"Cleaner": "",
|
120 |
+
"Rate": 44100,
|
121 |
+
"CharaMix": true,
|
122 |
+
"Characters": [
|
123 |
+
"\u695a\u7559\u9999"
|
124 |
+
],
|
125 |
+
"LanguageMap": {
|
126 |
+
"ZH": [
|
127 |
+
0,
|
128 |
+
0
|
129 |
+
],
|
130 |
+
"JP": [
|
131 |
+
1,
|
132 |
+
6
|
133 |
+
],
|
134 |
+
"EN": [
|
135 |
+
2,
|
136 |
+
8
|
137 |
+
]
|
138 |
+
},
|
139 |
+
"Dict": "BasicDict",
|
140 |
+
"BertPath": [
|
141 |
+
"chinese-roberta-wwm-ext-large",
|
142 |
+
"deberta-v2-large-japanese",
|
143 |
+
"bert-base-japanese-v3"
|
144 |
+
],
|
145 |
+
"Clap": false,
|
146 |
+
"BertSize": 1024
|
147 |
+
}
|
onnx/lx/lx_dec.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fb35e9eb1578cd1868abb75c7af19399e57e18ed531b9518a2776f733d4f98f
|
3 |
+
size 58678416
|
onnx/lx/lx_dec.rknn
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a72907bb2baa20aa928fd703a7d166f59513c20294a4070282f1448c249f335
|
3 |
+
size 73718997
|
onnx/lx/lx_dp.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51a264afd5abfb164a945a0a64918336bd47e2ceaa2978df729add93b79acb2a
|
3 |
+
size 1615226
|
onnx/lx/lx_emb.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ba71c3a9cfc7ba571cc29a2a116ebd38454119b85e314f3df11d54f3bd2d218
|
3 |
+
size 919367
|
onnx/lx/lx_enc_p.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51068e79be8e0dd278e1c726b6cb85a1330879859adf6176b58ff1c559a27a39
|
3 |
+
size 70750621
|
onnx/lx/lx_flow.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca6afa9ecc597f6b8cee85ccbd7e620f0492239cf52cf2e0975d6aba3a227395
|
3 |
+
size 120541444
|
onnx/lx/lx_flow.rknn
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:010f006570c64239177563bcadd80a925c5ddc1251a78023766fea09604a8f90
|
3 |
+
size 232704504
|
onnx/lx/lx_sdp.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de52263f189b6ee6c7c92b570cf8951702eab3b3356b183307fc01c7777c92e8
|
3 |
+
size 8125440
|
onnx/lx/rknn_convert.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
import os
|
8 |
+
import urllib
|
9 |
+
import traceback
|
10 |
+
import time
|
11 |
+
import sys
|
12 |
+
import numpy as np
|
13 |
+
import cv2
|
14 |
+
from rknn.api import RKNN
|
15 |
+
from math import exp
|
16 |
+
from sys import exit
|
17 |
+
|
18 |
+
os.chdir(os.path.dirname(os.path.abspath(__file__)))
|
19 |
+
|
20 |
+
model_name_base = "lx"
|
21 |
+
|
22 |
+
# set input length
|
23 |
+
input_len = 1024
|
24 |
+
|
25 |
+
|
26 |
+
sample_rate = 44100
|
27 |
+
print(f"当前模型输出长度: {input_len * 512 / sample_rate * 1000} ms")
|
28 |
+
|
29 |
+
|
30 |
+
def convert_flow():
|
31 |
+
rknn = RKNN(verbose=True)
|
32 |
+
|
33 |
+
ONNX_MODEL=f"{model_name_base}_flow.onnx"
|
34 |
+
RKNN_MODEL=ONNX_MODEL.replace(".onnx",".rknn")
|
35 |
+
DATASET="dataset.txt"
|
36 |
+
QUANTIZE=False
|
37 |
+
detailed_performance_log = True
|
38 |
+
|
39 |
+
# pre-process config
|
40 |
+
print('--> Config model')
|
41 |
+
rknn.config(quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588', optimization_level=3)
|
42 |
+
print('done')
|
43 |
+
|
44 |
+
# Load ONNX model
|
45 |
+
print('--> Loading model')
|
46 |
+
ret = rknn.load_onnx(model=ONNX_MODEL,
|
47 |
+
inputs=["z_p", "y_mask", "g"],
|
48 |
+
input_size_list=[[1, 192, input_len], [1, 1, input_len], [1, 256, 1]])
|
49 |
+
if ret != 0:
|
50 |
+
print('Load model failed!')
|
51 |
+
exit(ret)
|
52 |
+
print('done')
|
53 |
+
|
54 |
+
# Build model
|
55 |
+
print('--> Building model')
|
56 |
+
ret = rknn.build(do_quantization=QUANTIZE, dataset=DATASET, rknn_batch_size=None)
|
57 |
+
if ret != 0:
|
58 |
+
print('Build model failed!')
|
59 |
+
exit(ret)
|
60 |
+
print('done')
|
61 |
+
|
62 |
+
#export
|
63 |
+
print('--> Export RKNN model')
|
64 |
+
ret = rknn.export_rknn(RKNN_MODEL)
|
65 |
+
if ret != 0:
|
66 |
+
print('Export RKNN model failed!')
|
67 |
+
exit(ret)
|
68 |
+
print('done')
|
69 |
+
|
70 |
+
def convert_dec():
|
71 |
+
rknn = RKNN(verbose=True)
|
72 |
+
|
73 |
+
ONNX_MODEL=f"{model_name_base}_dec.onnx"
|
74 |
+
RKNN_MODEL=ONNX_MODEL.replace(".onnx",".rknn")
|
75 |
+
DATASET="dataset.txt"
|
76 |
+
QUANTIZE=False
|
77 |
+
detailed_performance_log = True
|
78 |
+
|
79 |
+
# pre-process config
|
80 |
+
print('--> Config model')
|
81 |
+
rknn.config(quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588', optimization_level=3)
|
82 |
+
print('done')
|
83 |
+
|
84 |
+
# Load ONNX model
|
85 |
+
print('--> Loading model')
|
86 |
+
ret = rknn.load_onnx(model=ONNX_MODEL,
|
87 |
+
inputs=["z_in", "g"],
|
88 |
+
input_size_list=[[1, 192, input_len], [1, 256, 1]])
|
89 |
+
if ret != 0:
|
90 |
+
print('Load model failed!')
|
91 |
+
exit(ret)
|
92 |
+
print('done')
|
93 |
+
|
94 |
+
# Build model
|
95 |
+
print('--> Building model')
|
96 |
+
ret = rknn.build(do_quantization=QUANTIZE, dataset=DATASET, rknn_batch_size=None)
|
97 |
+
if ret != 0:
|
98 |
+
print('Build model failed!')
|
99 |
+
exit(ret)
|
100 |
+
print('done')
|
101 |
+
|
102 |
+
#export
|
103 |
+
print('--> Export RKNN model')
|
104 |
+
ret = rknn.export_rknn(RKNN_MODEL)
|
105 |
+
if ret != 0:
|
106 |
+
print('Export RKNN model failed!')
|
107 |
+
exit(ret)
|
108 |
+
print('done')
|
109 |
+
|
110 |
+
convert_flow()
|
111 |
+
convert_dec()
|
opencpop-strict.txt
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a AA a
|
2 |
+
ai AA ai
|
3 |
+
an AA an
|
4 |
+
ang AA ang
|
5 |
+
ao AA ao
|
6 |
+
ba b a
|
7 |
+
bai b ai
|
8 |
+
ban b an
|
9 |
+
bang b ang
|
10 |
+
bao b ao
|
11 |
+
bei b ei
|
12 |
+
ben b en
|
13 |
+
beng b eng
|
14 |
+
bi b i
|
15 |
+
bian b ian
|
16 |
+
biao b iao
|
17 |
+
bie b ie
|
18 |
+
bin b in
|
19 |
+
bing b ing
|
20 |
+
bo b o
|
21 |
+
bu b u
|
22 |
+
ca c a
|
23 |
+
cai c ai
|
24 |
+
can c an
|
25 |
+
cang c ang
|
26 |
+
cao c ao
|
27 |
+
ce c e
|
28 |
+
cei c ei
|
29 |
+
cen c en
|
30 |
+
ceng c eng
|
31 |
+
cha ch a
|
32 |
+
chai ch ai
|
33 |
+
chan ch an
|
34 |
+
chang ch ang
|
35 |
+
chao ch ao
|
36 |
+
che ch e
|
37 |
+
chen ch en
|
38 |
+
cheng ch eng
|
39 |
+
chi ch ir
|
40 |
+
chong ch ong
|
41 |
+
chou ch ou
|
42 |
+
chu ch u
|
43 |
+
chua ch ua
|
44 |
+
chuai ch uai
|
45 |
+
chuan ch uan
|
46 |
+
chuang ch uang
|
47 |
+
chui ch ui
|
48 |
+
chun ch un
|
49 |
+
chuo ch uo
|
50 |
+
ci c i0
|
51 |
+
cong c ong
|
52 |
+
cou c ou
|
53 |
+
cu c u
|
54 |
+
cuan c uan
|
55 |
+
cui c ui
|
56 |
+
cun c un
|
57 |
+
cuo c uo
|
58 |
+
da d a
|
59 |
+
dai d ai
|
60 |
+
dan d an
|
61 |
+
dang d ang
|
62 |
+
dao d ao
|
63 |
+
de d e
|
64 |
+
dei d ei
|
65 |
+
den d en
|
66 |
+
deng d eng
|
67 |
+
di d i
|
68 |
+
dia d ia
|
69 |
+
dian d ian
|
70 |
+
diao d iao
|
71 |
+
die d ie
|
72 |
+
ding d ing
|
73 |
+
diu d iu
|
74 |
+
dong d ong
|
75 |
+
dou d ou
|
76 |
+
du d u
|
77 |
+
duan d uan
|
78 |
+
dui d ui
|
79 |
+
dun d un
|
80 |
+
duo d uo
|
81 |
+
e EE e
|
82 |
+
ei EE ei
|
83 |
+
en EE en
|
84 |
+
eng EE eng
|
85 |
+
er EE er
|
86 |
+
fa f a
|
87 |
+
fan f an
|
88 |
+
fang f ang
|
89 |
+
fei f ei
|
90 |
+
fen f en
|
91 |
+
feng f eng
|
92 |
+
fo f o
|
93 |
+
fou f ou
|
94 |
+
fu f u
|
95 |
+
ga g a
|
96 |
+
gai g ai
|
97 |
+
gan g an
|
98 |
+
gang g ang
|
99 |
+
gao g ao
|
100 |
+
ge g e
|
101 |
+
gei g ei
|
102 |
+
gen g en
|
103 |
+
geng g eng
|
104 |
+
gong g ong
|
105 |
+
gou g ou
|
106 |
+
gu g u
|
107 |
+
gua g ua
|
108 |
+
guai g uai
|
109 |
+
guan g uan
|
110 |
+
guang g uang
|
111 |
+
gui g ui
|
112 |
+
gun g un
|
113 |
+
guo g uo
|
114 |
+
ha h a
|
115 |
+
hai h ai
|
116 |
+
han h an
|
117 |
+
hang h ang
|
118 |
+
hao h ao
|
119 |
+
he h e
|
120 |
+
hei h ei
|
121 |
+
hen h en
|
122 |
+
heng h eng
|
123 |
+
hong h ong
|
124 |
+
hou h ou
|
125 |
+
hu h u
|
126 |
+
hua h ua
|
127 |
+
huai h uai
|
128 |
+
huan h uan
|
129 |
+
huang h uang
|
130 |
+
hui h ui
|
131 |
+
hun h un
|
132 |
+
huo h uo
|
133 |
+
ji j i
|
134 |
+
jia j ia
|
135 |
+
jian j ian
|
136 |
+
jiang j iang
|
137 |
+
jiao j iao
|
138 |
+
jie j ie
|
139 |
+
jin j in
|
140 |
+
jing j ing
|
141 |
+
jiong j iong
|
142 |
+
jiu j iu
|
143 |
+
ju j v
|
144 |
+
jv j v
|
145 |
+
juan j van
|
146 |
+
jvan j van
|
147 |
+
jue j ve
|
148 |
+
jve j ve
|
149 |
+
jun j vn
|
150 |
+
jvn j vn
|
151 |
+
ka k a
|
152 |
+
kai k ai
|
153 |
+
kan k an
|
154 |
+
kang k ang
|
155 |
+
kao k ao
|
156 |
+
ke k e
|
157 |
+
kei k ei
|
158 |
+
ken k en
|
159 |
+
keng k eng
|
160 |
+
kong k ong
|
161 |
+
kou k ou
|
162 |
+
ku k u
|
163 |
+
kua k ua
|
164 |
+
kuai k uai
|
165 |
+
kuan k uan
|
166 |
+
kuang k uang
|
167 |
+
kui k ui
|
168 |
+
kun k un
|
169 |
+
kuo k uo
|
170 |
+
la l a
|
171 |
+
lai l ai
|
172 |
+
lan l an
|
173 |
+
lang l ang
|
174 |
+
lao l ao
|
175 |
+
le l e
|
176 |
+
lei l ei
|
177 |
+
leng l eng
|
178 |
+
li l i
|
179 |
+
lia l ia
|
180 |
+
lian l ian
|
181 |
+
liang l iang
|
182 |
+
liao l iao
|
183 |
+
lie l ie
|
184 |
+
lin l in
|
185 |
+
ling l ing
|
186 |
+
liu l iu
|
187 |
+
lo l o
|
188 |
+
long l ong
|
189 |
+
lou l ou
|
190 |
+
lu l u
|
191 |
+
luan l uan
|
192 |
+
lun l un
|
193 |
+
luo l uo
|
194 |
+
lv l v
|
195 |
+
lve l ve
|
196 |
+
ma m a
|
197 |
+
mai m ai
|
198 |
+
man m an
|
199 |
+
mang m ang
|
200 |
+
mao m ao
|
201 |
+
me m e
|
202 |
+
mei m ei
|
203 |
+
men m en
|
204 |
+
meng m eng
|
205 |
+
mi m i
|
206 |
+
mian m ian
|
207 |
+
miao m iao
|
208 |
+
mie m ie
|
209 |
+
min m in
|
210 |
+
ming m ing
|
211 |
+
miu m iu
|
212 |
+
mo m o
|
213 |
+
mou m ou
|
214 |
+
mu m u
|
215 |
+
na n a
|
216 |
+
nai n ai
|
217 |
+
nan n an
|
218 |
+
nang n ang
|
219 |
+
nao n ao
|
220 |
+
ne n e
|
221 |
+
nei n ei
|
222 |
+
nen n en
|
223 |
+
neng n eng
|
224 |
+
ni n i
|
225 |
+
nian n ian
|
226 |
+
niang n iang
|
227 |
+
niao n iao
|
228 |
+
nie n ie
|
229 |
+
nin n in
|
230 |
+
ning n ing
|
231 |
+
niu n iu
|
232 |
+
nong n ong
|
233 |
+
nou n ou
|
234 |
+
nu n u
|
235 |
+
nuan n uan
|
236 |
+
nun n un
|
237 |
+
nuo n uo
|
238 |
+
nv n v
|
239 |
+
nve n ve
|
240 |
+
o OO o
|
241 |
+
ou OO ou
|
242 |
+
pa p a
|
243 |
+
pai p ai
|
244 |
+
pan p an
|
245 |
+
pang p ang
|
246 |
+
pao p ao
|
247 |
+
pei p ei
|
248 |
+
pen p en
|
249 |
+
peng p eng
|
250 |
+
pi p i
|
251 |
+
pian p ian
|
252 |
+
piao p iao
|
253 |
+
pie p ie
|
254 |
+
pin p in
|
255 |
+
ping p ing
|
256 |
+
po p o
|
257 |
+
pou p ou
|
258 |
+
pu p u
|
259 |
+
qi q i
|
260 |
+
qia q ia
|
261 |
+
qian q ian
|
262 |
+
qiang q iang
|
263 |
+
qiao q iao
|
264 |
+
qie q ie
|
265 |
+
qin q in
|
266 |
+
qing q ing
|
267 |
+
qiong q iong
|
268 |
+
qiu q iu
|
269 |
+
qu q v
|
270 |
+
qv q v
|
271 |
+
quan q van
|
272 |
+
qvan q van
|
273 |
+
que q ve
|
274 |
+
qve q ve
|
275 |
+
qun q vn
|
276 |
+
qvn q vn
|
277 |
+
ran r an
|
278 |
+
rang r ang
|
279 |
+
rao r ao
|
280 |
+
re r e
|
281 |
+
ren r en
|
282 |
+
reng r eng
|
283 |
+
ri r ir
|
284 |
+
rong r ong
|
285 |
+
rou r ou
|
286 |
+
ru r u
|
287 |
+
rua r ua
|
288 |
+
ruan r uan
|
289 |
+
rui r ui
|
290 |
+
run r un
|
291 |
+
ruo r uo
|
292 |
+
sa s a
|
293 |
+
sai s ai
|
294 |
+
san s an
|
295 |
+
sang s ang
|
296 |
+
sao s ao
|
297 |
+
se s e
|
298 |
+
sen s en
|
299 |
+
seng s eng
|
300 |
+
sha sh a
|
301 |
+
shai sh ai
|
302 |
+
shan sh an
|
303 |
+
shang sh ang
|
304 |
+
shao sh ao
|
305 |
+
she sh e
|
306 |
+
shei sh ei
|
307 |
+
shen sh en
|
308 |
+
sheng sh eng
|
309 |
+
shi sh ir
|
310 |
+
shou sh ou
|
311 |
+
shu sh u
|
312 |
+
shua sh ua
|
313 |
+
shuai sh uai
|
314 |
+
shuan sh uan
|
315 |
+
shuang sh uang
|
316 |
+
shui sh ui
|
317 |
+
shun sh un
|
318 |
+
shuo sh uo
|
319 |
+
si s i0
|
320 |
+
song s ong
|
321 |
+
sou s ou
|
322 |
+
su s u
|
323 |
+
suan s uan
|
324 |
+
sui s ui
|
325 |
+
sun s un
|
326 |
+
suo s uo
|
327 |
+
ta t a
|
328 |
+
tai t ai
|
329 |
+
tan t an
|
330 |
+
tang t ang
|
331 |
+
tao t ao
|
332 |
+
te t e
|
333 |
+
tei t ei
|
334 |
+
teng t eng
|
335 |
+
ti t i
|
336 |
+
tian t ian
|
337 |
+
tiao t iao
|
338 |
+
tie t ie
|
339 |
+
ting t ing
|
340 |
+
tong t ong
|
341 |
+
tou t ou
|
342 |
+
tu t u
|
343 |
+
tuan t uan
|
344 |
+
tui t ui
|
345 |
+
tun t un
|
346 |
+
tuo t uo
|
347 |
+
wa w a
|
348 |
+
wai w ai
|
349 |
+
wan w an
|
350 |
+
wang w ang
|
351 |
+
wei w ei
|
352 |
+
wen w en
|
353 |
+
weng w eng
|
354 |
+
wo w o
|
355 |
+
wu w u
|
356 |
+
xi x i
|
357 |
+
xia x ia
|
358 |
+
xian x ian
|
359 |
+
xiang x iang
|
360 |
+
xiao x iao
|
361 |
+
xie x ie
|
362 |
+
xin x in
|
363 |
+
xing x ing
|
364 |
+
xiong x iong
|
365 |
+
xiu x iu
|
366 |
+
xu x v
|
367 |
+
xv x v
|
368 |
+
xuan x van
|
369 |
+
xvan x van
|
370 |
+
xue x ve
|
371 |
+
xve x ve
|
372 |
+
xun x vn
|
373 |
+
xvn x vn
|
374 |
+
ya y a
|
375 |
+
yan y En
|
376 |
+
yang y ang
|
377 |
+
yao y ao
|
378 |
+
ye y E
|
379 |
+
yi y i
|
380 |
+
yin y in
|
381 |
+
ying y ing
|
382 |
+
yo y o
|
383 |
+
yong y ong
|
384 |
+
you y ou
|
385 |
+
yu y v
|
386 |
+
yv y v
|
387 |
+
yuan y van
|
388 |
+
yvan y van
|
389 |
+
yue y ve
|
390 |
+
yve y ve
|
391 |
+
yun y vn
|
392 |
+
yvn y vn
|
393 |
+
za z a
|
394 |
+
zai z ai
|
395 |
+
zan z an
|
396 |
+
zang z ang
|
397 |
+
zao z ao
|
398 |
+
ze z e
|
399 |
+
zei z ei
|
400 |
+
zen z en
|
401 |
+
zeng z eng
|
402 |
+
zha zh a
|
403 |
+
zhai zh ai
|
404 |
+
zhan zh an
|
405 |
+
zhang zh ang
|
406 |
+
zhao zh ao
|
407 |
+
zhe zh e
|
408 |
+
zhei zh ei
|
409 |
+
zhen zh en
|
410 |
+
zheng zh eng
|
411 |
+
zhi zh ir
|
412 |
+
zhong zh ong
|
413 |
+
zhou zh ou
|
414 |
+
zhu zh u
|
415 |
+
zhua zh ua
|
416 |
+
zhuai zh uai
|
417 |
+
zhuan zh uan
|
418 |
+
zhuang zh uang
|
419 |
+
zhui zh ui
|
420 |
+
zhun zh un
|
421 |
+
zhuo zh uo
|
422 |
+
zi z i0
|
423 |
+
zong z ong
|
424 |
+
zou z ou
|
425 |
+
zu z u
|
426 |
+
zuan z uan
|
427 |
+
zui z ui
|
428 |
+
zun z un
|
429 |
+
zuo z uo
|
rknn_run.py
ADDED
@@ -0,0 +1,1469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import onnxruntime as ort
|
3 |
+
from rknnlite.api.rknn_lite import RKNNLite
|
4 |
+
import numpy as np
|
5 |
+
import soundfile as sf
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
import time
|
8 |
+
import os
|
9 |
+
import re
|
10 |
+
import cn2an
|
11 |
+
from pypinyin import lazy_pinyin, Style
|
12 |
+
from typing import List
|
13 |
+
from typing import Tuple
|
14 |
+
import jieba
|
15 |
+
import jieba.posseg as psg
|
16 |
+
|
17 |
+
def convert_pad_shape(pad_shape):
|
18 |
+
layer = pad_shape[::-1]
|
19 |
+
pad_shape = [item for sublist in layer for item in sublist]
|
20 |
+
return pad_shape
|
21 |
+
|
22 |
+
|
23 |
+
def sequence_mask(length, max_length=None):
|
24 |
+
if max_length is None:
|
25 |
+
max_length = length.max()
|
26 |
+
x = np.arange(max_length, dtype=length.dtype)
|
27 |
+
return np.expand_dims(x, 0) < np.expand_dims(length, 1)
|
28 |
+
|
29 |
+
|
30 |
+
def generate_path(duration, mask):
|
31 |
+
"""
|
32 |
+
duration: [b, 1, t_x]
|
33 |
+
mask: [b, 1, t_y, t_x]
|
34 |
+
"""
|
35 |
+
|
36 |
+
b, _, t_y, t_x = mask.shape
|
37 |
+
cum_duration = np.cumsum(duration, -1)
|
38 |
+
|
39 |
+
cum_duration_flat = cum_duration.reshape(b * t_x)
|
40 |
+
path = sequence_mask(cum_duration_flat, t_y)
|
41 |
+
path = path.reshape(b, t_x, t_y)
|
42 |
+
path = path ^ np.pad(path, ((0, 0), (1, 0), (0, 0)))[:, :-1]
|
43 |
+
path = np.expand_dims(path, 1).transpose(0, 1, 3, 2)
|
44 |
+
return path
|
45 |
+
|
46 |
+
|
47 |
+
class InferenceSession:
|
48 |
+
def __init__(self, path, Providers=["CPUExecutionProvider"]):
|
49 |
+
ort_config = ort.SessionOptions()
|
50 |
+
ort_config.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
51 |
+
ort_config.intra_op_num_threads = 4
|
52 |
+
ort_config.inter_op_num_threads = 4
|
53 |
+
self.enc = ort.InferenceSession(path["enc"], providers=Providers, sess_options=ort_config)
|
54 |
+
self.emb_g = ort.InferenceSession(path["emb_g"], providers=Providers, sess_options=ort_config)
|
55 |
+
self.dp = ort.InferenceSession(path["dp"], providers=Providers, sess_options=ort_config)
|
56 |
+
self.sdp = ort.InferenceSession(path["sdp"], providers=Providers, sess_options=ort_config)
|
57 |
+
# flow模型用onnx比rknn快
|
58 |
+
# self.flow = RKNNLite(verbose=False)
|
59 |
+
# self.flow.load_rknn(path["flow"])
|
60 |
+
# self.flow.init_runtime(core_mask=RKNNLite.NPU_CORE_1)
|
61 |
+
self.flow = ort.InferenceSession(path["flow"], providers=Providers, sess_options=ort_config)
|
62 |
+
self.dec = RKNNLite(verbose=False)
|
63 |
+
self.dec.load_rknn(path["dec"])
|
64 |
+
self.dec.init_runtime()
|
65 |
+
# self.dec = ort.InferenceSession(path["dec"], providers=Providers, sess_options=ort_config)
|
66 |
+
|
67 |
+
def __call__(
|
68 |
+
self,
|
69 |
+
seq,
|
70 |
+
tone,
|
71 |
+
language,
|
72 |
+
bert_zh,
|
73 |
+
bert_jp,
|
74 |
+
bert_en,
|
75 |
+
vqidx,
|
76 |
+
sid,
|
77 |
+
seed=114514,
|
78 |
+
seq_noise_scale=0.8,
|
79 |
+
sdp_noise_scale=0.6,
|
80 |
+
length_scale=1.0,
|
81 |
+
sdp_ratio=0.0,
|
82 |
+
rknn_pad_to = 1024
|
83 |
+
):
|
84 |
+
if seq.ndim == 1:
|
85 |
+
seq = np.expand_dims(seq, 0)
|
86 |
+
if tone.ndim == 1:
|
87 |
+
tone = np.expand_dims(tone, 0)
|
88 |
+
if language.ndim == 1:
|
89 |
+
language = np.expand_dims(language, 0)
|
90 |
+
assert (seq.ndim == 2, tone.ndim == 2, language.ndim == 2)
|
91 |
+
|
92 |
+
start_time = time.time()
|
93 |
+
g = self.emb_g.run(
|
94 |
+
None,
|
95 |
+
{
|
96 |
+
"sid": sid.astype(np.int64),
|
97 |
+
},
|
98 |
+
)[0]
|
99 |
+
emb_g_time = time.time() - start_time
|
100 |
+
print(f"emb_g 运行时间: {emb_g_time:.4f} 秒")
|
101 |
+
|
102 |
+
g = np.expand_dims(g, -1)
|
103 |
+
start_time = time.time()
|
104 |
+
enc_rtn = self.enc.run(
|
105 |
+
None,
|
106 |
+
{
|
107 |
+
"x": seq.astype(np.int64),
|
108 |
+
"t": tone.astype(np.int64),
|
109 |
+
"language": language.astype(np.int64),
|
110 |
+
"bert_0": bert_zh.astype(np.float32),
|
111 |
+
"bert_1": bert_jp.astype(np.float32),
|
112 |
+
"bert_2": bert_en.astype(np.float32),
|
113 |
+
"g": g.astype(np.float32),
|
114 |
+
# 2.3版本的模型需要注释掉下面两行
|
115 |
+
"vqidx": vqidx.astype(np.int64),
|
116 |
+
"sid": sid.astype(np.int64),
|
117 |
+
},
|
118 |
+
)
|
119 |
+
enc_time = time.time() - start_time
|
120 |
+
print(f"enc 运行时间: {enc_time:.4f} 秒")
|
121 |
+
|
122 |
+
x, m_p, logs_p, x_mask = enc_rtn[0], enc_rtn[1], enc_rtn[2], enc_rtn[3]
|
123 |
+
np.random.seed(seed)
|
124 |
+
zinput = np.random.randn(x.shape[0], 2, x.shape[2]) * sdp_noise_scale
|
125 |
+
|
126 |
+
start_time = time.time()
|
127 |
+
sdp_output = self.sdp.run(
|
128 |
+
None, {"x": x, "x_mask": x_mask, "zin": zinput.astype(np.float32), "g": g}
|
129 |
+
)[0]
|
130 |
+
sdp_time = time.time() - start_time
|
131 |
+
print(f"sdp 运行时间: {sdp_time:.4f} 秒")
|
132 |
+
|
133 |
+
start_time = time.time()
|
134 |
+
dp_output = self.dp.run(None, {"x": x, "x_mask": x_mask, "g": g})[0]
|
135 |
+
dp_time = time.time() - start_time
|
136 |
+
print(f"dp 运行时间: {dp_time:.4f} 秒")
|
137 |
+
|
138 |
+
logw = sdp_output * (sdp_ratio) + dp_output * (1 - sdp_ratio)
|
139 |
+
w = np.exp(logw) * x_mask * length_scale
|
140 |
+
w_ceil = np.ceil(w)
|
141 |
+
y_lengths = np.clip(np.sum(w_ceil, (1, 2)), a_min=1.0, a_max=100000).astype(
|
142 |
+
np.int64
|
143 |
+
)
|
144 |
+
y_mask = np.expand_dims(sequence_mask(y_lengths, None), 1)
|
145 |
+
attn_mask = np.expand_dims(x_mask, 2) * np.expand_dims(y_mask, -1)
|
146 |
+
attn = generate_path(w_ceil, attn_mask)
|
147 |
+
m_p = np.matmul(attn.squeeze(1), m_p.transpose(0, 2, 1)).transpose(
|
148 |
+
0, 2, 1
|
149 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
150 |
+
logs_p = np.matmul(attn.squeeze(1), logs_p.transpose(0, 2, 1)).transpose(
|
151 |
+
0, 2, 1
|
152 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
153 |
+
|
154 |
+
z_p = (
|
155 |
+
m_p
|
156 |
+
+ np.random.randn(m_p.shape[0], m_p.shape[1], m_p.shape[2])
|
157 |
+
* np.exp(logs_p)
|
158 |
+
* seq_noise_scale
|
159 |
+
)
|
160 |
+
#truncate to rknn_pad_to
|
161 |
+
actual_len = z_p.shape[2]
|
162 |
+
if actual_len > rknn_pad_to:
|
163 |
+
print("警告, 输入长度超过 rknn_pad_to, 将被截断")
|
164 |
+
z_p = z_p[:,:,:rknn_pad_to]
|
165 |
+
y_mask = y_mask[:,:,:rknn_pad_to]
|
166 |
+
else:
|
167 |
+
z_p = np.pad(z_p, ((0, 0), (0, 0), (0, rknn_pad_to - z_p.shape[2])))
|
168 |
+
y_mask = np.pad(y_mask, ((0, 0), (0, 0), (0, rknn_pad_to - y_mask.shape[2])))
|
169 |
+
|
170 |
+
start_time = time.time()
|
171 |
+
z = self.flow.run(
|
172 |
+
None,
|
173 |
+
{
|
174 |
+
"z_p": z_p.astype(np.float32),
|
175 |
+
"y_mask": y_mask.astype(np.float32),
|
176 |
+
"g": g,
|
177 |
+
},
|
178 |
+
)[0]
|
179 |
+
flow_time = time.time() - start_time
|
180 |
+
print(f"flow 运行时间: {flow_time:.4f} 秒")
|
181 |
+
|
182 |
+
start_time = time.time()
|
183 |
+
dec_output = self.dec.inference([z.astype(np.float32), g])[0]
|
184 |
+
dec_time = time.time() - start_time
|
185 |
+
print(f"dec 运行时间: {dec_time:.4f} 秒")
|
186 |
+
|
187 |
+
# truncate to actual_len*512
|
188 |
+
return dec_output[:,:,:actual_len*512]
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
class ToneSandhi:
|
194 |
+
def __init__(self):
|
195 |
+
self.must_neural_tone_words = {
|
196 |
+
"麻烦",
|
197 |
+
"麻利",
|
198 |
+
"鸳鸯",
|
199 |
+
"高粱",
|
200 |
+
"骨头",
|
201 |
+
"骆驼",
|
202 |
+
"马虎",
|
203 |
+
"首饰",
|
204 |
+
"馒头",
|
205 |
+
"馄饨",
|
206 |
+
"风筝",
|
207 |
+
"难为",
|
208 |
+
"队伍",
|
209 |
+
"阔气",
|
210 |
+
"闺女",
|
211 |
+
"门道",
|
212 |
+
"锄头",
|
213 |
+
"铺盖",
|
214 |
+
"铃铛",
|
215 |
+
"铁匠",
|
216 |
+
"钥匙",
|
217 |
+
"里脊",
|
218 |
+
"里头",
|
219 |
+
"部分",
|
220 |
+
"那么",
|
221 |
+
"道士",
|
222 |
+
"造化",
|
223 |
+
"迷糊",
|
224 |
+
"连累",
|
225 |
+
"这么",
|
226 |
+
"这个",
|
227 |
+
"运气",
|
228 |
+
"过去",
|
229 |
+
"软和",
|
230 |
+
"转悠",
|
231 |
+
"踏实",
|
232 |
+
"跳蚤",
|
233 |
+
"跟头",
|
234 |
+
"趔趄",
|
235 |
+
"财主",
|
236 |
+
"豆腐",
|
237 |
+
"讲究",
|
238 |
+
"记性",
|
239 |
+
"记号",
|
240 |
+
"认识",
|
241 |
+
"规矩",
|
242 |
+
"见识",
|
243 |
+
"裁缝",
|
244 |
+
"补丁",
|
245 |
+
"衣裳",
|
246 |
+
"衣服",
|
247 |
+
"衙门",
|
248 |
+
"街坊",
|
249 |
+
"行李",
|
250 |
+
"行当",
|
251 |
+
"蛤蟆",
|
252 |
+
"蘑菇",
|
253 |
+
"薄荷",
|
254 |
+
"葫芦",
|
255 |
+
"葡萄",
|
256 |
+
"萝卜",
|
257 |
+
"荸荠",
|
258 |
+
"苗条",
|
259 |
+
"苗头",
|
260 |
+
"苍蝇",
|
261 |
+
"芝麻",
|
262 |
+
"舒服",
|
263 |
+
"舒坦",
|
264 |
+
"舌头",
|
265 |
+
"自在",
|
266 |
+
"膏药",
|
267 |
+
"脾气",
|
268 |
+
"脑袋",
|
269 |
+
"脊梁",
|
270 |
+
"能耐",
|
271 |
+
"胳膊",
|
272 |
+
"胭脂",
|
273 |
+
"胡萝",
|
274 |
+
"胡琴",
|
275 |
+
"胡同",
|
276 |
+
"聪明",
|
277 |
+
"耽误",
|
278 |
+
"耽搁",
|
279 |
+
"耷拉",
|
280 |
+
"耳朵",
|
281 |
+
"老爷",
|
282 |
+
"老实",
|
283 |
+
"老婆",
|
284 |
+
"老头",
|
285 |
+
"老太",
|
286 |
+
"翻腾",
|
287 |
+
"罗嗦",
|
288 |
+
"罐头",
|
289 |
+
"编辑",
|
290 |
+
"结实",
|
291 |
+
"红火",
|
292 |
+
"累赘",
|
293 |
+
"糨糊",
|
294 |
+
"糊涂",
|
295 |
+
"精神",
|
296 |
+
"粮食",
|
297 |
+
"簸箕",
|
298 |
+
"篱笆",
|
299 |
+
"算计",
|
300 |
+
"算盘",
|
301 |
+
"答应",
|
302 |
+
"笤帚",
|
303 |
+
"笑语",
|
304 |
+
"笑话",
|
305 |
+
"窟窿",
|
306 |
+
"窝囊",
|
307 |
+
"窗户",
|
308 |
+
"稳当",
|
309 |
+
"稀罕",
|
310 |
+
"称呼",
|
311 |
+
"秧歌",
|
312 |
+
"秀气",
|
313 |
+
"秀才",
|
314 |
+
"福气",
|
315 |
+
"祖宗",
|
316 |
+
"砚台",
|
317 |
+
"码头",
|
318 |
+
"石榴",
|
319 |
+
"石头",
|
320 |
+
"石匠",
|
321 |
+
"知识",
|
322 |
+
"眼睛",
|
323 |
+
"眯缝",
|
324 |
+
"眨巴",
|
325 |
+
"眉毛",
|
326 |
+
"相声",
|
327 |
+
"盘算",
|
328 |
+
"白净",
|
329 |
+
"痢疾",
|
330 |
+
"痛快",
|
331 |
+
"疟疾",
|
332 |
+
"疙瘩",
|
333 |
+
"疏忽",
|
334 |
+
"畜生",
|
335 |
+
"生意",
|
336 |
+
"甘蔗",
|
337 |
+
"琵琶",
|
338 |
+
"琢磨",
|
339 |
+
"琉璃",
|
340 |
+
"玻璃",
|
341 |
+
"玫瑰",
|
342 |
+
"玄乎",
|
343 |
+
"狐狸",
|
344 |
+
"状元",
|
345 |
+
"特务",
|
346 |
+
"牲口",
|
347 |
+
"牙碜",
|
348 |
+
"牌楼",
|
349 |
+
"爽快",
|
350 |
+
"爱人",
|
351 |
+
"热闹",
|
352 |
+
"烧饼",
|
353 |
+
"烟筒",
|
354 |
+
"烂糊",
|
355 |
+
"点心",
|
356 |
+
"炊帚",
|
357 |
+
"灯笼",
|
358 |
+
"火候",
|
359 |
+
"漂亮",
|
360 |
+
"滑溜",
|
361 |
+
"溜达",
|
362 |
+
"温和",
|
363 |
+
"清楚",
|
364 |
+
"消息",
|
365 |
+
"浪头",
|
366 |
+
"活泼",
|
367 |
+
"比方",
|
368 |
+
"正经",
|
369 |
+
"欺负",
|
370 |
+
"模糊",
|
371 |
+
"槟榔",
|
372 |
+
"棺材",
|
373 |
+
"棒槌",
|
374 |
+
"棉花",
|
375 |
+
"核桃",
|
376 |
+
"栅栏",
|
377 |
+
"柴火",
|
378 |
+
"架势",
|
379 |
+
"枕头",
|
380 |
+
"枇杷",
|
381 |
+
"机灵",
|
382 |
+
"本事",
|
383 |
+
"木头",
|
384 |
+
"木匠",
|
385 |
+
"朋友",
|
386 |
+
"月饼",
|
387 |
+
"月亮",
|
388 |
+
"暖和",
|
389 |
+
"明白",
|
390 |
+
"时候",
|
391 |
+
"新鲜",
|
392 |
+
"故事",
|
393 |
+
"收拾",
|
394 |
+
"收成",
|
395 |
+
"提防",
|
396 |
+
"挖苦",
|
397 |
+
"挑剔",
|
398 |
+
"指甲",
|
399 |
+
"指头",
|
400 |
+
"拾掇",
|
401 |
+
"拳头",
|
402 |
+
"拨弄",
|
403 |
+
"招牌",
|
404 |
+
"招呼",
|
405 |
+
"抬举",
|
406 |
+
"护士",
|
407 |
+
"折腾",
|
408 |
+
"扫帚",
|
409 |
+
"打量",
|
410 |
+
"打算",
|
411 |
+
"打点",
|
412 |
+
"打扮",
|
413 |
+
"打听",
|
414 |
+
"打发",
|
415 |
+
"扎实",
|
416 |
+
"扁担",
|
417 |
+
"戒指",
|
418 |
+
"懒得",
|
419 |
+
"意识",
|
420 |
+
"意思",
|
421 |
+
"情形",
|
422 |
+
"悟性",
|
423 |
+
"怪物",
|
424 |
+
"思量",
|
425 |
+
"怎么",
|
426 |
+
"念头",
|
427 |
+
"念叨",
|
428 |
+
"快活",
|
429 |
+
"忙活",
|
430 |
+
"志气",
|
431 |
+
"心思",
|
432 |
+
"得罪",
|
433 |
+
"张罗",
|
434 |
+
"弟兄",
|
435 |
+
"开通",
|
436 |
+
"应酬",
|
437 |
+
"庄稼",
|
438 |
+
"干事",
|
439 |
+
"帮手",
|
440 |
+
"帐篷",
|
441 |
+
"希罕",
|
442 |
+
"师父",
|
443 |
+
"师傅",
|
444 |
+
"巴结",
|
445 |
+
"巴掌",
|
446 |
+
"差事",
|
447 |
+
"工夫",
|
448 |
+
"岁数",
|
449 |
+
"屁股",
|
450 |
+
"尾巴",
|
451 |
+
"少爷",
|
452 |
+
"小气",
|
453 |
+
"小伙",
|
454 |
+
"将就",
|
455 |
+
"对头",
|
456 |
+
"对付",
|
457 |
+
"寡妇",
|
458 |
+
"家伙",
|
459 |
+
"客气",
|
460 |
+
"实在",
|
461 |
+
"官司",
|
462 |
+
"学问",
|
463 |
+
"学生",
|
464 |
+
"字号",
|
465 |
+
"嫁妆",
|
466 |
+
"媳妇",
|
467 |
+
"媒人",
|
468 |
+
"婆家",
|
469 |
+
"娘家",
|
470 |
+
"委屈",
|
471 |
+
"姑娘",
|
472 |
+
"姐夫",
|
473 |
+
"妯娌",
|
474 |
+
"妥当",
|
475 |
+
"妖精",
|
476 |
+
"奴才",
|
477 |
+
"女婿",
|
478 |
+
"头发",
|
479 |
+
"太阳",
|
480 |
+
"大爷",
|
481 |
+
"大方",
|
482 |
+
"大意",
|
483 |
+
"大夫",
|
484 |
+
"多少",
|
485 |
+
"多么",
|
486 |
+
"外甥",
|
487 |
+
"壮实",
|
488 |
+
"地道",
|
489 |
+
"地方",
|
490 |
+
"在乎",
|
491 |
+
"困难",
|
492 |
+
"嘴巴",
|
493 |
+
"嘱咐",
|
494 |
+
"嘟囔",
|
495 |
+
"嘀咕",
|
496 |
+
"喜欢",
|
497 |
+
"喇嘛",
|
498 |
+
"喇叭",
|
499 |
+
"商量",
|
500 |
+
"唾沫",
|
501 |
+
"哑巴",
|
502 |
+
"哈欠",
|
503 |
+
"哆嗦",
|
504 |
+
"咳嗽",
|
505 |
+
"和尚",
|
506 |
+
"告诉",
|
507 |
+
"告示",
|
508 |
+
"含糊",
|
509 |
+
"吓唬",
|
510 |
+
"后头",
|
511 |
+
"名字",
|
512 |
+
"名堂",
|
513 |
+
"合同",
|
514 |
+
"吆喝",
|
515 |
+
"叫唤",
|
516 |
+
"口袋",
|
517 |
+
"厚道",
|
518 |
+
"厉害",
|
519 |
+
"千斤",
|
520 |
+
"包袱",
|
521 |
+
"包涵",
|
522 |
+
"匀称",
|
523 |
+
"勤快",
|
524 |
+
"动静",
|
525 |
+
"动弹",
|
526 |
+
"功夫",
|
527 |
+
"力气",
|
528 |
+
"前头",
|
529 |
+
"刺猬",
|
530 |
+
"刺激",
|
531 |
+
"别扭",
|
532 |
+
"利落",
|
533 |
+
"利索",
|
534 |
+
"利害",
|
535 |
+
"分析",
|
536 |
+
"出息",
|
537 |
+
"凑合",
|
538 |
+
"凉快",
|
539 |
+
"冷战",
|
540 |
+
"冤枉",
|
541 |
+
"冒失",
|
542 |
+
"养活",
|
543 |
+
"关系",
|
544 |
+
"先生",
|
545 |
+
"兄弟",
|
546 |
+
"便宜",
|
547 |
+
"使唤",
|
548 |
+
"佩服",
|
549 |
+
"作坊",
|
550 |
+
"体面",
|
551 |
+
"位置",
|
552 |
+
"似的",
|
553 |
+
"伙计",
|
554 |
+
"休息",
|
555 |
+
"什么",
|
556 |
+
"人家",
|
557 |
+
"亲戚",
|
558 |
+
"亲家",
|
559 |
+
"���情",
|
560 |
+
"云彩",
|
561 |
+
"事情",
|
562 |
+
"买卖",
|
563 |
+
"主意",
|
564 |
+
"丫头",
|
565 |
+
"丧气",
|
566 |
+
"两口",
|
567 |
+
"东西",
|
568 |
+
"东家",
|
569 |
+
"世故",
|
570 |
+
"不由",
|
571 |
+
"不在",
|
572 |
+
"下水",
|
573 |
+
"下巴",
|
574 |
+
"上头",
|
575 |
+
"上司",
|
576 |
+
"丈夫",
|
577 |
+
"丈人",
|
578 |
+
"一辈",
|
579 |
+
"那个",
|
580 |
+
"菩萨",
|
581 |
+
"父亲",
|
582 |
+
"母亲",
|
583 |
+
"咕噜",
|
584 |
+
"邋遢",
|
585 |
+
"费用",
|
586 |
+
"冤家",
|
587 |
+
"甜头",
|
588 |
+
"介绍",
|
589 |
+
"荒唐",
|
590 |
+
"大人",
|
591 |
+
"泥鳅",
|
592 |
+
"幸福",
|
593 |
+
"熟悉",
|
594 |
+
"计划",
|
595 |
+
"扑腾",
|
596 |
+
"蜡烛",
|
597 |
+
"姥爷",
|
598 |
+
"照顾",
|
599 |
+
"喉咙",
|
600 |
+
"吉他",
|
601 |
+
"弄堂",
|
602 |
+
"蚂蚱",
|
603 |
+
"凤凰",
|
604 |
+
"拖沓",
|
605 |
+
"寒碜",
|
606 |
+
"糟蹋",
|
607 |
+
"倒腾",
|
608 |
+
"报复",
|
609 |
+
"逻辑",
|
610 |
+
"盘缠",
|
611 |
+
"喽啰",
|
612 |
+
"牢骚",
|
613 |
+
"咖喱",
|
614 |
+
"扫把",
|
615 |
+
"惦记",
|
616 |
+
}
|
617 |
+
self.must_not_neural_tone_words = {
|
618 |
+
"男子",
|
619 |
+
"女子",
|
620 |
+
"分子",
|
621 |
+
"原子",
|
622 |
+
"量子",
|
623 |
+
"莲子",
|
624 |
+
"石子",
|
625 |
+
"瓜子",
|
626 |
+
"电子",
|
627 |
+
"人人",
|
628 |
+
"虎虎",
|
629 |
+
}
|
630 |
+
self.punc = ":,;。?!“”‘’':,;.?!"
|
631 |
+
|
632 |
+
# the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041
|
633 |
+
# e.g.
|
634 |
+
# word: "家里"
|
635 |
+
# pos: "s"
|
636 |
+
# finals: ['ia1', 'i3']
|
637 |
+
def _neural_sandhi(self, word: str, pos: str, finals: List[str]) -> List[str]:
|
638 |
+
# reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
|
639 |
+
for j, item in enumerate(word):
|
640 |
+
if (
|
641 |
+
j - 1 >= 0
|
642 |
+
and item == word[j - 1]
|
643 |
+
and pos[0] in {"n", "v", "a"}
|
644 |
+
and word not in self.must_not_neural_tone_words
|
645 |
+
):
|
646 |
+
finals[j] = finals[j][:-1] + "5"
|
647 |
+
ge_idx = word.find("个")
|
648 |
+
if len(word) >= 1 and word[-1] in "吧呢啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
|
649 |
+
finals[-1] = finals[-1][:-1] + "5"
|
650 |
+
elif len(word) >= 1 and word[-1] in "的地得":
|
651 |
+
finals[-1] = finals[-1][:-1] + "5"
|
652 |
+
# e.g. 走了, 看着, 去过
|
653 |
+
# elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
|
654 |
+
# finals[-1] = finals[-1][:-1] + "5"
|
655 |
+
elif (
|
656 |
+
len(word) > 1
|
657 |
+
and word[-1] in "们子"
|
658 |
+
and pos in {"r", "n"}
|
659 |
+
and word not in self.must_not_neural_tone_words
|
660 |
+
):
|
661 |
+
finals[-1] = finals[-1][:-1] + "5"
|
662 |
+
# e.g. 桌上, 地下, 家里
|
663 |
+
elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
|
664 |
+
finals[-1] = finals[-1][:-1] + "5"
|
665 |
+
# e.g. 上来, 下去
|
666 |
+
elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
|
667 |
+
finals[-1] = finals[-1][:-1] + "5"
|
668 |
+
# 个做量词
|
669 |
+
elif (
|
670 |
+
ge_idx >= 1
|
671 |
+
and (
|
672 |
+
word[ge_idx - 1].isnumeric()
|
673 |
+
or word[ge_idx - 1] in "几有两半多各整每做是"
|
674 |
+
)
|
675 |
+
) or word == "个":
|
676 |
+
finals[ge_idx] = finals[ge_idx][:-1] + "5"
|
677 |
+
else:
|
678 |
+
if (
|
679 |
+
word in self.must_neural_tone_words
|
680 |
+
or word[-2:] in self.must_neural_tone_words
|
681 |
+
):
|
682 |
+
finals[-1] = finals[-1][:-1] + "5"
|
683 |
+
|
684 |
+
word_list = self._split_word(word)
|
685 |
+
finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
|
686 |
+
for i, word in enumerate(word_list):
|
687 |
+
# conventional neural in Chinese
|
688 |
+
if (
|
689 |
+
word in self.must_neural_tone_words
|
690 |
+
or word[-2:] in self.must_neural_tone_words
|
691 |
+
):
|
692 |
+
finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
|
693 |
+
finals = sum(finals_list, [])
|
694 |
+
return finals
|
695 |
+
|
696 |
+
def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
697 |
+
# e.g. 看不懂
|
698 |
+
if len(word) == 3 and word[1] == "不":
|
699 |
+
finals[1] = finals[1][:-1] + "5"
|
700 |
+
else:
|
701 |
+
for i, char in enumerate(word):
|
702 |
+
# "不" before tone4 should be bu2, e.g. 不怕
|
703 |
+
if char == "不" and i + 1 < len(word) and finals[i + 1][-1] == "4":
|
704 |
+
finals[i] = finals[i][:-1] + "2"
|
705 |
+
return finals
|
706 |
+
|
707 |
+
def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
708 |
+
# "一" in number sequences, e.g. 一零零, 二一零
|
709 |
+
if word.find("一") != -1 and all(
|
710 |
+
[item.isnumeric() for item in word if item != "一"]
|
711 |
+
):
|
712 |
+
return finals
|
713 |
+
# "一" between reduplication words should be yi5, e.g. 看一看
|
714 |
+
elif len(word) == 3 and word[1] == "一" and word[0] == word[-1]:
|
715 |
+
finals[1] = finals[1][:-1] + "5"
|
716 |
+
# when "一" is ordinal word, it should be yi1
|
717 |
+
elif word.startswith("第一"):
|
718 |
+
finals[1] = finals[1][:-1] + "1"
|
719 |
+
else:
|
720 |
+
for i, char in enumerate(word):
|
721 |
+
if char == "一" and i + 1 < len(word):
|
722 |
+
# "一" before tone4 should be yi2, e.g. 一段
|
723 |
+
if finals[i + 1][-1] == "4":
|
724 |
+
finals[i] = finals[i][:-1] + "2"
|
725 |
+
# "一" before non-tone4 should be yi4, e.g. 一天
|
726 |
+
else:
|
727 |
+
# "一" 后面如果是标点,还读一声
|
728 |
+
if word[i + 1] not in self.punc:
|
729 |
+
finals[i] = finals[i][:-1] + "4"
|
730 |
+
return finals
|
731 |
+
|
732 |
+
def _split_word(self, word: str) -> List[str]:
|
733 |
+
word_list = jieba.cut_for_search(word)
|
734 |
+
word_list = sorted(word_list, key=lambda i: len(i), reverse=False)
|
735 |
+
first_subword = word_list[0]
|
736 |
+
first_begin_idx = word.find(first_subword)
|
737 |
+
if first_begin_idx == 0:
|
738 |
+
second_subword = word[len(first_subword) :]
|
739 |
+
new_word_list = [first_subword, second_subword]
|
740 |
+
else:
|
741 |
+
second_subword = word[: -len(first_subword)]
|
742 |
+
new_word_list = [second_subword, first_subword]
|
743 |
+
return new_word_list
|
744 |
+
|
745 |
+
def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
746 |
+
if len(word) == 2 and self._all_tone_three(finals):
|
747 |
+
finals[0] = finals[0][:-1] + "2"
|
748 |
+
elif len(word) == 3:
|
749 |
+
word_list = self._split_word(word)
|
750 |
+
if self._all_tone_three(finals):
|
751 |
+
# disyllabic + monosyllabic, e.g. 蒙古/包
|
752 |
+
if len(word_list[0]) == 2:
|
753 |
+
finals[0] = finals[0][:-1] + "2"
|
754 |
+
finals[1] = finals[1][:-1] + "2"
|
755 |
+
# monosyllabic + disyllabic, e.g. 纸/老虎
|
756 |
+
elif len(word_list[0]) == 1:
|
757 |
+
finals[1] = finals[1][:-1] + "2"
|
758 |
+
else:
|
759 |
+
finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
|
760 |
+
if len(finals_list) == 2:
|
761 |
+
for i, sub in enumerate(finals_list):
|
762 |
+
# e.g. 所有/人
|
763 |
+
if self._all_tone_three(sub) and len(sub) == 2:
|
764 |
+
finals_list[i][0] = finals_list[i][0][:-1] + "2"
|
765 |
+
# e.g. 好/喜欢
|
766 |
+
elif (
|
767 |
+
i == 1
|
768 |
+
and not self._all_tone_three(sub)
|
769 |
+
and finals_list[i][0][-1] == "3"
|
770 |
+
and finals_list[0][-1][-1] == "3"
|
771 |
+
):
|
772 |
+
finals_list[0][-1] = finals_list[0][-1][:-1] + "2"
|
773 |
+
finals = sum(finals_list, [])
|
774 |
+
# split idiom into two words who's length is 2
|
775 |
+
elif len(word) == 4:
|
776 |
+
finals_list = [finals[:2], finals[2:]]
|
777 |
+
finals = []
|
778 |
+
for sub in finals_list:
|
779 |
+
if self._all_tone_three(sub):
|
780 |
+
sub[0] = sub[0][:-1] + "2"
|
781 |
+
finals += sub
|
782 |
+
|
783 |
+
return finals
|
784 |
+
|
785 |
+
def _all_tone_three(self, finals: List[str]) -> bool:
|
786 |
+
return all(x[-1] == "3" for x in finals)
|
787 |
+
|
788 |
+
# merge "不" and the word behind it
|
789 |
+
# if don't merge, "不" sometimes appears alone according to jieba, which may occur sandhi error
|
790 |
+
def _merge_bu(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
791 |
+
new_seg = []
|
792 |
+
last_word = ""
|
793 |
+
for word, pos in seg:
|
794 |
+
if last_word == "不":
|
795 |
+
word = last_word + word
|
796 |
+
if word != "不":
|
797 |
+
new_seg.append((word, pos))
|
798 |
+
last_word = word[:]
|
799 |
+
if last_word == "不":
|
800 |
+
new_seg.append((last_word, "d"))
|
801 |
+
last_word = ""
|
802 |
+
return new_seg
|
803 |
+
|
804 |
+
# function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听"
|
805 |
+
# function 2: merge single "一" and the word behind it
|
806 |
+
# if don't merge, "一" sometimes appears alone according to jieba, which may occur sandhi error
|
807 |
+
# e.g.
|
808 |
+
# input seg: [('听', 'v'), ('一', 'm'), ('听', 'v')]
|
809 |
+
# output seg: [['听一听', 'v']]
|
810 |
+
def _merge_yi(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
811 |
+
new_seg = []
|
812 |
+
# function 1
|
813 |
+
for i, (word, pos) in enumerate(seg):
|
814 |
+
if (
|
815 |
+
i - 1 >= 0
|
816 |
+
and word == "一"
|
817 |
+
and i + 1 < len(seg)
|
818 |
+
and seg[i - 1][0] == seg[i + 1][0]
|
819 |
+
and seg[i - 1][1] == "v"
|
820 |
+
):
|
821 |
+
new_seg[i - 1][0] = new_seg[i - 1][0] + "一" + new_seg[i - 1][0]
|
822 |
+
else:
|
823 |
+
if (
|
824 |
+
i - 2 >= 0
|
825 |
+
and seg[i - 1][0] == "一"
|
826 |
+
and seg[i - 2][0] == word
|
827 |
+
and pos == "v"
|
828 |
+
):
|
829 |
+
continue
|
830 |
+
else:
|
831 |
+
new_seg.append([word, pos])
|
832 |
+
seg = new_seg
|
833 |
+
new_seg = []
|
834 |
+
# function 2
|
835 |
+
for i, (word, pos) in enumerate(seg):
|
836 |
+
if new_seg and new_seg[-1][0] == "一":
|
837 |
+
new_seg[-1][0] = new_seg[-1][0] + word
|
838 |
+
else:
|
839 |
+
new_seg.append([word, pos])
|
840 |
+
return new_seg
|
841 |
+
|
842 |
+
# the first and the second words are all_tone_three
|
843 |
+
def _merge_continuous_three_tones(
|
844 |
+
self, seg: List[Tuple[str, str]]
|
845 |
+
) -> List[Tuple[str, str]]:
|
846 |
+
new_seg = []
|
847 |
+
sub_finals_list = [
|
848 |
+
lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
849 |
+
for (word, pos) in seg
|
850 |
+
]
|
851 |
+
assert len(sub_finals_list) == len(seg)
|
852 |
+
merge_last = [False] * len(seg)
|
853 |
+
for i, (word, pos) in enumerate(seg):
|
854 |
+
if (
|
855 |
+
i - 1 >= 0
|
856 |
+
and self._all_tone_three(sub_finals_list[i - 1])
|
857 |
+
and self._all_tone_three(sub_finals_list[i])
|
858 |
+
and not merge_last[i - 1]
|
859 |
+
):
|
860 |
+
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
|
861 |
+
if (
|
862 |
+
not self._is_reduplication(seg[i - 1][0])
|
863 |
+
and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
|
864 |
+
):
|
865 |
+
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
866 |
+
merge_last[i] = True
|
867 |
+
else:
|
868 |
+
new_seg.append([word, pos])
|
869 |
+
else:
|
870 |
+
new_seg.append([word, pos])
|
871 |
+
|
872 |
+
return new_seg
|
873 |
+
|
874 |
+
def _is_reduplication(self, word: str) -> bool:
|
875 |
+
return len(word) == 2 and word[0] == word[1]
|
876 |
+
|
877 |
+
# the last char of first word and the first char of second word is tone_three
|
878 |
+
def _merge_continuous_three_tones_2(
|
879 |
+
self, seg: List[Tuple[str, str]]
|
880 |
+
) -> List[Tuple[str, str]]:
|
881 |
+
new_seg = []
|
882 |
+
sub_finals_list = [
|
883 |
+
lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
884 |
+
for (word, pos) in seg
|
885 |
+
]
|
886 |
+
assert len(sub_finals_list) == len(seg)
|
887 |
+
merge_last = [False] * len(seg)
|
888 |
+
for i, (word, pos) in enumerate(seg):
|
889 |
+
if (
|
890 |
+
i - 1 >= 0
|
891 |
+
and sub_finals_list[i - 1][-1][-1] == "3"
|
892 |
+
and sub_finals_list[i][0][-1] == "3"
|
893 |
+
and not merge_last[i - 1]
|
894 |
+
):
|
895 |
+
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
|
896 |
+
if (
|
897 |
+
not self._is_reduplication(seg[i - 1][0])
|
898 |
+
and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
|
899 |
+
):
|
900 |
+
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
901 |
+
merge_last[i] = True
|
902 |
+
else:
|
903 |
+
new_seg.append([word, pos])
|
904 |
+
else:
|
905 |
+
new_seg.append([word, pos])
|
906 |
+
return new_seg
|
907 |
+
|
908 |
+
def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
909 |
+
new_seg = []
|
910 |
+
for i, (word, pos) in enumerate(seg):
|
911 |
+
if i - 1 >= 0 and word == "儿" and seg[i - 1][0] != "#":
|
912 |
+
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
913 |
+
else:
|
914 |
+
new_seg.append([word, pos])
|
915 |
+
return new_seg
|
916 |
+
|
917 |
+
def _merge_reduplication(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
918 |
+
new_seg = []
|
919 |
+
for i, (word, pos) in enumerate(seg):
|
920 |
+
if new_seg and word == new_seg[-1][0]:
|
921 |
+
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
922 |
+
else:
|
923 |
+
new_seg.append([word, pos])
|
924 |
+
return new_seg
|
925 |
+
|
926 |
+
def pre_merge_for_modify(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
927 |
+
seg = self._merge_bu(seg)
|
928 |
+
try:
|
929 |
+
seg = self._merge_yi(seg)
|
930 |
+
except:
|
931 |
+
print("_merge_yi failed")
|
932 |
+
seg = self._merge_reduplication(seg)
|
933 |
+
seg = self._merge_continuous_three_tones(seg)
|
934 |
+
seg = self._merge_continuous_three_tones_2(seg)
|
935 |
+
seg = self._merge_er(seg)
|
936 |
+
return seg
|
937 |
+
|
938 |
+
def modified_tone(self, word: str, pos: str, finals: List[str]) -> List[str]:
|
939 |
+
finals = self._bu_sandhi(word, finals)
|
940 |
+
finals = self._yi_sandhi(word, finals)
|
941 |
+
finals = self._neural_sandhi(word, pos, finals)
|
942 |
+
finals = self._three_sandhi(word, finals)
|
943 |
+
return finals
|
944 |
+
|
945 |
+
|
946 |
+
punctuation = ["!", "?", "…", ",", ".", "'", "-"]
|
947 |
+
pu_symbols = punctuation + ["SP", "UNK"]
|
948 |
+
pad = "_"
|
949 |
+
|
950 |
+
# chinese
|
951 |
+
zh_symbols = [
|
952 |
+
"E",
|
953 |
+
"En",
|
954 |
+
"a",
|
955 |
+
"ai",
|
956 |
+
"an",
|
957 |
+
"ang",
|
958 |
+
"ao",
|
959 |
+
"b",
|
960 |
+
"c",
|
961 |
+
"ch",
|
962 |
+
"d",
|
963 |
+
"e",
|
964 |
+
"ei",
|
965 |
+
"en",
|
966 |
+
"eng",
|
967 |
+
"er",
|
968 |
+
"f",
|
969 |
+
"g",
|
970 |
+
"h",
|
971 |
+
"i",
|
972 |
+
"i0",
|
973 |
+
"ia",
|
974 |
+
"ian",
|
975 |
+
"iang",
|
976 |
+
"iao",
|
977 |
+
"ie",
|
978 |
+
"in",
|
979 |
+
"ing",
|
980 |
+
"iong",
|
981 |
+
"ir",
|
982 |
+
"iu",
|
983 |
+
"j",
|
984 |
+
"k",
|
985 |
+
"l",
|
986 |
+
"m",
|
987 |
+
"n",
|
988 |
+
"o",
|
989 |
+
"ong",
|
990 |
+
"ou",
|
991 |
+
"p",
|
992 |
+
"q",
|
993 |
+
"r",
|
994 |
+
"s",
|
995 |
+
"sh",
|
996 |
+
"t",
|
997 |
+
"u",
|
998 |
+
"ua",
|
999 |
+
"uai",
|
1000 |
+
"uan",
|
1001 |
+
"uang",
|
1002 |
+
"ui",
|
1003 |
+
"un",
|
1004 |
+
"uo",
|
1005 |
+
"v",
|
1006 |
+
"van",
|
1007 |
+
"ve",
|
1008 |
+
"vn",
|
1009 |
+
"w",
|
1010 |
+
"x",
|
1011 |
+
"y",
|
1012 |
+
"z",
|
1013 |
+
"zh",
|
1014 |
+
"AA",
|
1015 |
+
"EE",
|
1016 |
+
"OO",
|
1017 |
+
]
|
1018 |
+
num_zh_tones = 6
|
1019 |
+
|
1020 |
+
# japanese
|
1021 |
+
ja_symbols = [
|
1022 |
+
"N",
|
1023 |
+
"a",
|
1024 |
+
"a:",
|
1025 |
+
"b",
|
1026 |
+
"by",
|
1027 |
+
"ch",
|
1028 |
+
"d",
|
1029 |
+
"dy",
|
1030 |
+
"e",
|
1031 |
+
"e:",
|
1032 |
+
"f",
|
1033 |
+
"g",
|
1034 |
+
"gy",
|
1035 |
+
"h",
|
1036 |
+
"hy",
|
1037 |
+
"i",
|
1038 |
+
"i:",
|
1039 |
+
"j",
|
1040 |
+
"k",
|
1041 |
+
"ky",
|
1042 |
+
"m",
|
1043 |
+
"my",
|
1044 |
+
"n",
|
1045 |
+
"ny",
|
1046 |
+
"o",
|
1047 |
+
"o:",
|
1048 |
+
"p",
|
1049 |
+
"py",
|
1050 |
+
"q",
|
1051 |
+
"r",
|
1052 |
+
"ry",
|
1053 |
+
"s",
|
1054 |
+
"sh",
|
1055 |
+
"t",
|
1056 |
+
"ts",
|
1057 |
+
"ty",
|
1058 |
+
"u",
|
1059 |
+
"u:",
|
1060 |
+
"w",
|
1061 |
+
"y",
|
1062 |
+
"z",
|
1063 |
+
"zy",
|
1064 |
+
]
|
1065 |
+
num_ja_tones = 2
|
1066 |
+
|
1067 |
+
# English
|
1068 |
+
en_symbols = [
|
1069 |
+
"aa",
|
1070 |
+
"ae",
|
1071 |
+
"ah",
|
1072 |
+
"ao",
|
1073 |
+
"aw",
|
1074 |
+
"ay",
|
1075 |
+
"b",
|
1076 |
+
"ch",
|
1077 |
+
"d",
|
1078 |
+
"dh",
|
1079 |
+
"eh",
|
1080 |
+
"er",
|
1081 |
+
"ey",
|
1082 |
+
"f",
|
1083 |
+
"g",
|
1084 |
+
"hh",
|
1085 |
+
"ih",
|
1086 |
+
"iy",
|
1087 |
+
"jh",
|
1088 |
+
"k",
|
1089 |
+
"l",
|
1090 |
+
"m",
|
1091 |
+
"n",
|
1092 |
+
"ng",
|
1093 |
+
"ow",
|
1094 |
+
"oy",
|
1095 |
+
"p",
|
1096 |
+
"r",
|
1097 |
+
"s",
|
1098 |
+
"sh",
|
1099 |
+
"t",
|
1100 |
+
"th",
|
1101 |
+
"uh",
|
1102 |
+
"uw",
|
1103 |
+
"V",
|
1104 |
+
"w",
|
1105 |
+
"y",
|
1106 |
+
"z",
|
1107 |
+
"zh",
|
1108 |
+
]
|
1109 |
+
num_en_tones = 4
|
1110 |
+
|
1111 |
+
# combine all symbols
|
1112 |
+
normal_symbols = sorted(set(zh_symbols + ja_symbols + en_symbols))
|
1113 |
+
symbols = [pad] + normal_symbols + pu_symbols
|
1114 |
+
sil_phonemes_ids = [symbols.index(i) for i in pu_symbols]
|
1115 |
+
|
1116 |
+
# combine all tones
|
1117 |
+
num_tones = num_zh_tones + num_ja_tones + num_en_tones
|
1118 |
+
|
1119 |
+
# language maps
|
1120 |
+
language_id_map = {"ZH": 0, "JP": 1, "EN": 2}
|
1121 |
+
num_languages = len(language_id_map.keys())
|
1122 |
+
|
1123 |
+
language_tone_start_map = {
|
1124 |
+
"ZH": 0,
|
1125 |
+
"JP": num_zh_tones,
|
1126 |
+
"EN": num_zh_tones + num_ja_tones,
|
1127 |
+
}
|
1128 |
+
|
1129 |
+
current_file_path = os.path.dirname(__file__)
|
1130 |
+
pinyin_to_symbol_map = {
|
1131 |
+
line.split("\t")[0]: line.strip().split("\t")[1]
|
1132 |
+
for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
|
1133 |
+
}
|
1134 |
+
|
1135 |
+
|
1136 |
+
|
1137 |
+
|
1138 |
+
rep_map = {
|
1139 |
+
":": ",",
|
1140 |
+
";": ",",
|
1141 |
+
",": ",",
|
1142 |
+
"。": ".",
|
1143 |
+
"!": "!",
|
1144 |
+
"?": "?",
|
1145 |
+
"\n": ".",
|
1146 |
+
"·": ",",
|
1147 |
+
"、": ",",
|
1148 |
+
"...": "…",
|
1149 |
+
"$": ".",
|
1150 |
+
"“": "'",
|
1151 |
+
"”": "'",
|
1152 |
+
'"': "'",
|
1153 |
+
"‘": "'",
|
1154 |
+
"’": "'",
|
1155 |
+
"(": "'",
|
1156 |
+
")": "'",
|
1157 |
+
"(": "'",
|
1158 |
+
")": "'",
|
1159 |
+
"《": "'",
|
1160 |
+
"》": "'",
|
1161 |
+
"【": "'",
|
1162 |
+
"】": "'",
|
1163 |
+
"[": "'",
|
1164 |
+
"]": "'",
|
1165 |
+
"—": "-",
|
1166 |
+
"~": "-",
|
1167 |
+
"~": "-",
|
1168 |
+
"「": "'",
|
1169 |
+
"」": "'",
|
1170 |
+
}
|
1171 |
+
|
1172 |
+
tone_modifier = ToneSandhi()
|
1173 |
+
|
1174 |
+
|
1175 |
+
def replace_punctuation(text):
|
1176 |
+
text = text.replace("嗯", "恩").replace("呣", "母")
|
1177 |
+
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
1178 |
+
|
1179 |
+
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
1180 |
+
|
1181 |
+
replaced_text = re.sub(
|
1182 |
+
r"[^\u4e00-\u9fa5" + "".join(punctuation) + r"]+", "", replaced_text
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
return replaced_text
|
1186 |
+
|
1187 |
+
|
1188 |
+
def g2p(text):
|
1189 |
+
pattern = r"(?<=[{0}])\s*".format("".join(punctuation))
|
1190 |
+
sentences = [i for i in re.split(pattern, text) if i.strip() != ""]
|
1191 |
+
phones, tones, word2ph = _g2p(sentences)
|
1192 |
+
assert sum(word2ph) == len(phones)
|
1193 |
+
assert len(word2ph) == len(text) # Sometimes it will crash,you can add a try-catch.
|
1194 |
+
phones = ["_"] + phones + ["_"]
|
1195 |
+
tones = [0] + tones + [0]
|
1196 |
+
word2ph = [1] + word2ph + [1]
|
1197 |
+
return phones, tones, word2ph
|
1198 |
+
|
1199 |
+
|
1200 |
+
def _get_initials_finals(word):
|
1201 |
+
initials = []
|
1202 |
+
finals = []
|
1203 |
+
orig_initials = lazy_pinyin(word, neutral_tone_with_five=True, style=Style.INITIALS)
|
1204 |
+
orig_finals = lazy_pinyin(
|
1205 |
+
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3
|
1206 |
+
)
|
1207 |
+
for c, v in zip(orig_initials, orig_finals):
|
1208 |
+
initials.append(c)
|
1209 |
+
finals.append(v)
|
1210 |
+
return initials, finals
|
1211 |
+
|
1212 |
+
|
1213 |
+
def _g2p(segments):
|
1214 |
+
phones_list = []
|
1215 |
+
tones_list = []
|
1216 |
+
word2ph = []
|
1217 |
+
for seg in segments:
|
1218 |
+
# Replace all English words in the sentence
|
1219 |
+
seg = re.sub("[a-zA-Z]+", "", seg)
|
1220 |
+
seg_cut = psg.lcut(seg)
|
1221 |
+
initials = []
|
1222 |
+
finals = []
|
1223 |
+
seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
|
1224 |
+
for word, pos in seg_cut:
|
1225 |
+
if pos == "eng":
|
1226 |
+
continue
|
1227 |
+
sub_initials, sub_finals = _get_initials_finals(word)
|
1228 |
+
sub_finals = tone_modifier.modified_tone(word, pos, sub_finals)
|
1229 |
+
initials.append(sub_initials)
|
1230 |
+
finals.append(sub_finals)
|
1231 |
+
|
1232 |
+
# assert len(sub_initials) == len(sub_finals) == len(word)
|
1233 |
+
initials = sum(initials, [])
|
1234 |
+
finals = sum(finals, [])
|
1235 |
+
#
|
1236 |
+
for c, v in zip(initials, finals):
|
1237 |
+
raw_pinyin = c + v
|
1238 |
+
# NOTE: post process for pypinyin outputs
|
1239 |
+
# we discriminate i, ii and iii
|
1240 |
+
if c == v:
|
1241 |
+
assert c in punctuation
|
1242 |
+
phone = [c]
|
1243 |
+
tone = "0"
|
1244 |
+
word2ph.append(1)
|
1245 |
+
else:
|
1246 |
+
v_without_tone = v[:-1]
|
1247 |
+
tone = v[-1]
|
1248 |
+
|
1249 |
+
pinyin = c + v_without_tone
|
1250 |
+
assert tone in "12345"
|
1251 |
+
|
1252 |
+
if c:
|
1253 |
+
# 多音节
|
1254 |
+
v_rep_map = {
|
1255 |
+
"uei": "ui",
|
1256 |
+
"iou": "iu",
|
1257 |
+
"uen": "un",
|
1258 |
+
}
|
1259 |
+
if v_without_tone in v_rep_map.keys():
|
1260 |
+
pinyin = c + v_rep_map[v_without_tone]
|
1261 |
+
else:
|
1262 |
+
# 单音节
|
1263 |
+
pinyin_rep_map = {
|
1264 |
+
"ing": "ying",
|
1265 |
+
"i": "yi",
|
1266 |
+
"in": "yin",
|
1267 |
+
"u": "wu",
|
1268 |
+
}
|
1269 |
+
if pinyin in pinyin_rep_map.keys():
|
1270 |
+
pinyin = pinyin_rep_map[pinyin]
|
1271 |
+
else:
|
1272 |
+
single_rep_map = {
|
1273 |
+
"v": "yu",
|
1274 |
+
"e": "e",
|
1275 |
+
"i": "y",
|
1276 |
+
"u": "w",
|
1277 |
+
}
|
1278 |
+
if pinyin[0] in single_rep_map.keys():
|
1279 |
+
pinyin = single_rep_map[pinyin[0]] + pinyin[1:]
|
1280 |
+
|
1281 |
+
assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
|
1282 |
+
phone = pinyin_to_symbol_map[pinyin].split(" ")
|
1283 |
+
word2ph.append(len(phone))
|
1284 |
+
|
1285 |
+
phones_list += phone
|
1286 |
+
tones_list += [int(tone)] * len(phone)
|
1287 |
+
return phones_list, tones_list, word2ph
|
1288 |
+
|
1289 |
+
|
1290 |
+
def text_normalize(text):
|
1291 |
+
numbers = re.findall(r"\d+(?:\.?\d+)?", text)
|
1292 |
+
for number in numbers:
|
1293 |
+
text = text.replace(number, cn2an.an2cn(number), 1)
|
1294 |
+
text = replace_punctuation(text)
|
1295 |
+
return text
|
1296 |
+
|
1297 |
+
def get_bert_feature(
|
1298 |
+
text,
|
1299 |
+
word2ph,
|
1300 |
+
style_text=None,
|
1301 |
+
style_weight=0.7,
|
1302 |
+
):
|
1303 |
+
global bert_model
|
1304 |
+
|
1305 |
+
# 使用tokenizer处理输入文本
|
1306 |
+
inputs = tokenizer(text, return_tensors="np",padding="max_length",truncation=True,max_length=256)
|
1307 |
+
|
1308 |
+
# 运行ONNX模型
|
1309 |
+
start_time = time.time()
|
1310 |
+
res = bert_model.inference([inputs["input_ids"], inputs["attention_mask"], inputs["token_type_ids"]])
|
1311 |
+
flow_time = time.time() - start_time
|
1312 |
+
print(f"bert 运行时间: {flow_time:.4f} 秒")
|
1313 |
+
# 处理输出
|
1314 |
+
# res = np.concatenate(res[0], -1)[0]
|
1315 |
+
res = res[0][0]
|
1316 |
+
|
1317 |
+
if style_text:
|
1318 |
+
assert False # TODO
|
1319 |
+
# style_inputs = tokenizer(style_text, return_tensors="np")
|
1320 |
+
# style_onnx_inputs = {name: style_inputs[name] for name in bert_model.get_inputs()}
|
1321 |
+
# style_res = bert_model.run(None, style_onnx_inputs)
|
1322 |
+
# style_hidden_states = style_res[-1]
|
1323 |
+
# style_res = np.concatenate(style_hidden_states[-3:-2], -1)[0]
|
1324 |
+
# style_res_mean = style_res.mean(0)
|
1325 |
+
|
1326 |
+
assert len(word2ph) == len(text) + 2
|
1327 |
+
word2phone = word2ph
|
1328 |
+
phone_level_feature = []
|
1329 |
+
for i in range(len(word2phone)):
|
1330 |
+
if style_text:
|
1331 |
+
repeat_feature = (
|
1332 |
+
res[i].repeat(word2phone[i], 1) * (1 - style_weight)
|
1333 |
+
# + style_res_mean.repeat(word2phone[i], 1) * style_weight
|
1334 |
+
)
|
1335 |
+
else:
|
1336 |
+
repeat_feature = np.tile(res[i], (word2phone[i], 1))
|
1337 |
+
phone_level_feature.append(repeat_feature)
|
1338 |
+
|
1339 |
+
phone_level_feature = np.concatenate(phone_level_feature, axis=0)
|
1340 |
+
|
1341 |
+
return phone_level_feature.T
|
1342 |
+
|
1343 |
+
def clean_text(text, language):
|
1344 |
+
norm_text = text_normalize(text)
|
1345 |
+
phones, tones, word2ph = g2p(norm_text)
|
1346 |
+
return norm_text, phones, tones, word2ph
|
1347 |
+
|
1348 |
+
|
1349 |
+
def clean_text_bert(text, language):
|
1350 |
+
norm_text = text_normalize(text)
|
1351 |
+
phones, tones, word2ph = g2p(norm_text)
|
1352 |
+
bert = get_bert_feature(norm_text, word2ph)
|
1353 |
+
return phones, tones, bert
|
1354 |
+
|
1355 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
1356 |
+
|
1357 |
+
def cleaned_text_to_sequence(cleaned_text, tones, language):
|
1358 |
+
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
1359 |
+
Args:
|
1360 |
+
text: string to convert to a sequence
|
1361 |
+
Returns:
|
1362 |
+
List of integers corresponding to the symbols in the text
|
1363 |
+
"""
|
1364 |
+
phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
|
1365 |
+
tone_start = language_tone_start_map[language]
|
1366 |
+
tones = [i + tone_start for i in tones]
|
1367 |
+
lang_id = language_id_map[language]
|
1368 |
+
lang_ids = [lang_id for i in phones]
|
1369 |
+
return phones, tones, lang_ids
|
1370 |
+
|
1371 |
+
def text_to_sequence(text, language):
|
1372 |
+
norm_text, phones, tones, word2ph = clean_text(text, language)
|
1373 |
+
return cleaned_text_to_sequence(phones, tones, language)
|
1374 |
+
|
1375 |
+
def intersperse(lst, item):
|
1376 |
+
result = [item] * (len(lst) * 2 + 1)
|
1377 |
+
result[1::2] = lst
|
1378 |
+
return result
|
1379 |
+
|
1380 |
+
def get_text(text, language_str, style_text=None, style_weight=0.7, add_blank=False):
|
1381 |
+
# 在此处实现当前版本的get_text
|
1382 |
+
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
1383 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
1384 |
+
|
1385 |
+
if add_blank:
|
1386 |
+
phone = intersperse(phone, 0)
|
1387 |
+
tone = intersperse(tone, 0)
|
1388 |
+
language = intersperse(language, 0)
|
1389 |
+
for i in range(len(word2ph)):
|
1390 |
+
word2ph[i] = word2ph[i] * 2
|
1391 |
+
word2ph[0] += 1
|
1392 |
+
bert_ori = get_bert_feature(
|
1393 |
+
norm_text, word2ph, style_text, style_weight
|
1394 |
+
)
|
1395 |
+
del word2ph
|
1396 |
+
assert bert_ori.shape[-1] == len(phone), phone
|
1397 |
+
|
1398 |
+
if language_str == "ZH":
|
1399 |
+
bert = bert_ori
|
1400 |
+
ja_bert = np.zeros((1024, len(phone)))
|
1401 |
+
en_bert = np.zeros((1024, len(phone)))
|
1402 |
+
elif language_str == "JP":
|
1403 |
+
bert = np.zeros((1024, len(phone)))
|
1404 |
+
ja_bert = bert_ori
|
1405 |
+
en_bert = np.zeros((1024, len(phone)))
|
1406 |
+
elif language_str == "EN":
|
1407 |
+
bert = np.zeros((1024, len(phone)))
|
1408 |
+
ja_bert = np.zeros((1024, len(phone)))
|
1409 |
+
en_bert = bert_ori
|
1410 |
+
else:
|
1411 |
+
raise ValueError("language_str should be ZH, JP or EN")
|
1412 |
+
|
1413 |
+
assert bert.shape[-1] == len(
|
1414 |
+
phone
|
1415 |
+
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
1416 |
+
phone = np.array(phone)
|
1417 |
+
tone = np.array(tone)
|
1418 |
+
language = np.array(language)
|
1419 |
+
return bert, ja_bert, en_bert, phone, tone, language
|
1420 |
+
|
1421 |
+
if __name__ == "__main__":
|
1422 |
+
name = "lx"
|
1423 |
+
model_prefix = f"onnx/{name}/{name}_"
|
1424 |
+
bert_path = "./bert/chinese-roberta-wwm-ext-large"
|
1425 |
+
flow_dec_input_len = 1024
|
1426 |
+
model_sample_rate = 44100
|
1427 |
+
# text = "不必说碧绿的菜畦,光滑的石井栏,高大的皂荚树,紫红的桑葚;也不必说鸣蝉在树叶里长吟,肥胖的黄蜂伏在菜花上,轻捷的叫天子(云雀)忽然从草间直窜向云霄里去了。单是周围的短短的泥墙根一带,就有无限趣味。油蛉在这里低唱, 蟋蟀们在这里弹琴。翻开断砖来,有时会遇见蜈蚣;还有斑蝥,倘若用手指按住它的脊梁,便会“啪”的一声,从后窍喷出一阵烟雾。何首乌藤和木莲藤缠络着,木莲有莲房一般的果实,何首乌有臃肿的根。有人说,何首乌根是有像人形的,吃了便可以成仙,我于是常常拔它起来,牵连不断地拔起来,也曾因此弄坏了泥墙,却从来没有见过有一块根像人样。如果不怕刺,还可以摘到覆盆子,像小珊瑚珠攒成的小球,又酸又甜,色味都比桑葚要好得远。"
|
1428 |
+
text = "我个人认为,这个意大利面就应该拌42号混凝土,因为这个螺丝钉的长度,它很容易会直接影响到挖掘机的扭矩你知道吧。你往里砸的时候,一瞬间它就会产生大量的高能蛋白,俗称ufo,会严重影响经济的发展,甚至对整个太平洋以及充电器都会造成一定的核污染。你知道啊?再者说,根据这个勾股定理,你可以很容易地推断出人工饲养的东条英机,它是可以捕获野生的三角函数的。所以说这个秦始皇的切面是否具有放射性啊,特朗普的N次方是否含有沉淀物,都不影响这个沃尔玛跟维尔康在南极会合。"
|
1429 |
+
|
1430 |
+
global bert_model,tokenizer
|
1431 |
+
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
1432 |
+
bert_model = RKNNLite(verbose=False)
|
1433 |
+
bert_model.load_rknn(bert_path + "/model.rknn")
|
1434 |
+
bert_model.init_runtime()
|
1435 |
+
model = InferenceSession({
|
1436 |
+
"enc": model_prefix + "enc_p.onnx",
|
1437 |
+
"emb_g": model_prefix + "emb.onnx",
|
1438 |
+
"dp": model_prefix + "dp.onnx",
|
1439 |
+
"sdp": model_prefix + "sdp.onnx",
|
1440 |
+
"flow": model_prefix + "flow.onnx",
|
1441 |
+
"dec": model_prefix + "dec.rknn",
|
1442 |
+
})
|
1443 |
+
|
1444 |
+
# 从句号分割
|
1445 |
+
text_seg = re.split(r'(?<=[。!?;])', text)
|
1446 |
+
output_acc = np.array([0.0])
|
1447 |
+
|
1448 |
+
for text in text_seg:
|
1449 |
+
bert, ja_bert, en_bert, phone, tone, language = get_text(text, "ZH", add_blank=True)
|
1450 |
+
bert = np.transpose(bert)
|
1451 |
+
ja_bert = np.transpose(ja_bert)
|
1452 |
+
en_bert = np.transpose(en_bert)
|
1453 |
+
|
1454 |
+
sid = np.array([0])
|
1455 |
+
vqidx = np.array([0])
|
1456 |
+
|
1457 |
+
output = model(phone, tone, language, bert, ja_bert, en_bert, vqidx, sid ,
|
1458 |
+
rknn_pad_to=flow_dec_input_len,
|
1459 |
+
seed=114514,
|
1460 |
+
seq_noise_scale=0.8,
|
1461 |
+
sdp_noise_scale=0.6,
|
1462 |
+
length_scale=1,
|
1463 |
+
sdp_ratio=0,
|
1464 |
+
)[0,0]
|
1465 |
+
output_acc = np.concatenate([output_acc, output])
|
1466 |
+
print(f"已生成长度: {len(output_acc) / model_sample_rate:.2f} 秒")
|
1467 |
+
|
1468 |
+
sf.write('output.wav', output_acc, model_sample_rate)
|
1469 |
+
print("已生成output.wav")
|