layer-project

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0064
  • Accuracy: 1.0

Model description

The model is fine-tuned as a reward function for RLHF finetuning.

Intended uses & limitations

The model is trained on very limited data.

Training and evaluation data

hanyinwang/layer-project-reward-training

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0365 1.0 5 0.0393 1.0
0.0142 2.0 10 0.0349 1.0
0.0228 3.0 15 0.0295 1.0
0.0157 4.0 20 0.0249 1.0
0.0153 5.0 25 0.0211 1.0
0.0117 6.0 30 0.0181 1.0
0.0072 7.0 35 0.0155 1.0
0.0121 8.0 40 0.0135 1.0
0.0097 9.0 45 0.0119 1.0
0.008 10.0 50 0.0106 1.0
0.0055 11.0 55 0.0095 1.0
0.0046 12.0 60 0.0087 1.0
0.0085 13.0 65 0.0081 1.0
0.0046 14.0 70 0.0076 1.0
0.0059 15.0 75 0.0072 1.0
0.0044 16.0 80 0.0069 1.0
0.0021 17.0 85 0.0067 1.0
0.0039 18.0 90 0.0066 1.0
0.0027 19.0 95 0.0065 1.0
0.0039 20.0 100 0.0064 1.0

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for hanyinwang/layer-project-reward-model

Dataset used to train hanyinwang/layer-project-reward-model