hamedkhaledi
commited on
Commit
•
fc8375b
1
Parent(s):
816ca68
Update model
Browse files- loss.tsv +25 -10
- pytorch_model.bin +2 -2
- training.log +427 -504
loss.tsv
CHANGED
@@ -1,11 +1,26 @@
|
|
1 |
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
|
2 |
-
1
|
3 |
-
2
|
4 |
-
3
|
5 |
-
4
|
6 |
-
5
|
7 |
-
6
|
8 |
-
7
|
9 |
-
8
|
10 |
-
9
|
11 |
-
10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
|
2 |
+
1 17:39:58 0 0.1000 0.3109681178284759
|
3 |
+
2 17:40:42 0 0.1000 0.20057100306125844
|
4 |
+
3 17:41:27 0 0.1000 0.17261909990758714
|
5 |
+
4 17:42:11 0 0.1000 0.15576972670076938
|
6 |
+
5 17:42:55 0 0.1000 0.14613418882490908
|
7 |
+
6 17:43:42 0 0.1000 0.13720022315511476
|
8 |
+
7 17:44:28 0 0.1000 0.1311953916457159
|
9 |
+
8 17:45:13 0 0.1000 0.12400992274152707
|
10 |
+
9 17:45:57 0 0.1000 0.12089939536351921
|
11 |
+
10 17:46:42 0 0.1000 0.11553892493259296
|
12 |
+
11 17:47:28 0 0.1000 0.11235548860771406
|
13 |
+
12 17:48:14 0 0.1000 0.10902060426303656
|
14 |
+
13 17:48:58 0 0.1000 0.10584545961804817
|
15 |
+
14 17:49:44 0 0.1000 0.10316462591380299
|
16 |
+
15 17:50:30 0 0.1000 0.10016650636902542
|
17 |
+
16 17:51:14 0 0.1000 0.09816042593725789
|
18 |
+
17 17:52:00 0 0.1000 0.09549838191421252
|
19 |
+
18 17:52:45 0 0.1000 0.09342126242532844
|
20 |
+
19 17:53:30 1 0.1000 0.09356125312853102
|
21 |
+
20 17:54:16 0 0.1000 0.09071197625507689
|
22 |
+
21 17:55:02 0 0.1000 0.08936144991150767
|
23 |
+
22 17:55:47 0 0.1000 0.08721695770532781
|
24 |
+
23 17:56:35 0 0.1000 0.08477302249272443
|
25 |
+
24 17:57:19 0 0.1000 0.08390131654977669
|
26 |
+
25 17:58:06 0 0.1000 0.08265912111946726
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:faeb3f44efa21b8769d116bfd963c594cd6fd0810ae45b9f623d1ac8a3ff6170
|
3 |
+
size 380599364
|
training.log
CHANGED
@@ -1,522 +1,445 @@
|
|
1 |
-
2022-08-06
|
2 |
-
2022-08-06
|
3 |
-
(embeddings):
|
4 |
-
(
|
5 |
-
|
6 |
-
|
7 |
-
(
|
8 |
-
(
|
9 |
-
(
|
10 |
-
(
|
11 |
)
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
-
)
|
22 |
-
(output): BertSelfOutput(
|
23 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
-
)
|
27 |
-
)
|
28 |
-
(intermediate): BertIntermediate(
|
29 |
-
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
-
(intermediate_act_fn): GELUActivation()
|
31 |
-
)
|
32 |
-
(output): BertOutput(
|
33 |
-
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
-
)
|
37 |
-
)
|
38 |
-
(1): BertLayer(
|
39 |
-
(attention): BertAttention(
|
40 |
-
(self): BertSelfAttention(
|
41 |
-
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
-
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
-
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
-
)
|
46 |
-
(output): BertSelfOutput(
|
47 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
-
)
|
51 |
-
)
|
52 |
-
(intermediate): BertIntermediate(
|
53 |
-
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
-
(intermediate_act_fn): GELUActivation()
|
55 |
-
)
|
56 |
-
(output): BertOutput(
|
57 |
-
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
-
)
|
61 |
-
)
|
62 |
-
(2): BertLayer(
|
63 |
-
(attention): BertAttention(
|
64 |
-
(self): BertSelfAttention(
|
65 |
-
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
-
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
-
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
-
)
|
70 |
-
(output): BertSelfOutput(
|
71 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
-
)
|
75 |
-
)
|
76 |
-
(intermediate): BertIntermediate(
|
77 |
-
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
-
(intermediate_act_fn): GELUActivation()
|
79 |
-
)
|
80 |
-
(output): BertOutput(
|
81 |
-
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
-
)
|
85 |
-
)
|
86 |
-
(3): BertLayer(
|
87 |
-
(attention): BertAttention(
|
88 |
-
(self): BertSelfAttention(
|
89 |
-
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
-
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
-
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
-
)
|
94 |
-
(output): BertSelfOutput(
|
95 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
-
)
|
99 |
-
)
|
100 |
-
(intermediate): BertIntermediate(
|
101 |
-
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
-
(intermediate_act_fn): GELUActivation()
|
103 |
-
)
|
104 |
-
(output): BertOutput(
|
105 |
-
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
-
)
|
109 |
-
)
|
110 |
-
(4): BertLayer(
|
111 |
-
(attention): BertAttention(
|
112 |
-
(self): BertSelfAttention(
|
113 |
-
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
-
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
-
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
-
)
|
118 |
-
(output): BertSelfOutput(
|
119 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
-
)
|
123 |
-
)
|
124 |
-
(intermediate): BertIntermediate(
|
125 |
-
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
-
(intermediate_act_fn): GELUActivation()
|
127 |
-
)
|
128 |
-
(output): BertOutput(
|
129 |
-
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
-
)
|
133 |
-
)
|
134 |
-
(5): BertLayer(
|
135 |
-
(attention): BertAttention(
|
136 |
-
(self): BertSelfAttention(
|
137 |
-
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
-
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
-
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
-
)
|
142 |
-
(output): BertSelfOutput(
|
143 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
-
)
|
147 |
-
)
|
148 |
-
(intermediate): BertIntermediate(
|
149 |
-
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
-
(intermediate_act_fn): GELUActivation()
|
151 |
-
)
|
152 |
-
(output): BertOutput(
|
153 |
-
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
-
)
|
157 |
-
)
|
158 |
-
(6): BertLayer(
|
159 |
-
(attention): BertAttention(
|
160 |
-
(self): BertSelfAttention(
|
161 |
-
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
-
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
-
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
-
)
|
166 |
-
(output): BertSelfOutput(
|
167 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
-
)
|
171 |
-
)
|
172 |
-
(intermediate): BertIntermediate(
|
173 |
-
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
-
(intermediate_act_fn): GELUActivation()
|
175 |
-
)
|
176 |
-
(output): BertOutput(
|
177 |
-
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
-
)
|
181 |
-
)
|
182 |
-
(7): BertLayer(
|
183 |
-
(attention): BertAttention(
|
184 |
-
(self): BertSelfAttention(
|
185 |
-
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
-
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
-
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
-
)
|
190 |
-
(output): BertSelfOutput(
|
191 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
-
)
|
195 |
-
)
|
196 |
-
(intermediate): BertIntermediate(
|
197 |
-
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
-
(intermediate_act_fn): GELUActivation()
|
199 |
-
)
|
200 |
-
(output): BertOutput(
|
201 |
-
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
-
)
|
205 |
-
)
|
206 |
-
(8): BertLayer(
|
207 |
-
(attention): BertAttention(
|
208 |
-
(self): BertSelfAttention(
|
209 |
-
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
-
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
-
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
-
)
|
214 |
-
(output): BertSelfOutput(
|
215 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
-
)
|
219 |
-
)
|
220 |
-
(intermediate): BertIntermediate(
|
221 |
-
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
-
(intermediate_act_fn): GELUActivation()
|
223 |
-
)
|
224 |
-
(output): BertOutput(
|
225 |
-
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
-
)
|
229 |
-
)
|
230 |
-
(9): BertLayer(
|
231 |
-
(attention): BertAttention(
|
232 |
-
(self): BertSelfAttention(
|
233 |
-
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
-
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
-
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
-
)
|
238 |
-
(output): BertSelfOutput(
|
239 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
-
)
|
243 |
-
)
|
244 |
-
(intermediate): BertIntermediate(
|
245 |
-
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
-
(intermediate_act_fn): GELUActivation()
|
247 |
-
)
|
248 |
-
(output): BertOutput(
|
249 |
-
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
-
)
|
253 |
-
)
|
254 |
-
(10): BertLayer(
|
255 |
-
(attention): BertAttention(
|
256 |
-
(self): BertSelfAttention(
|
257 |
-
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
-
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
-
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
-
)
|
262 |
-
(output): BertSelfOutput(
|
263 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
-
)
|
267 |
-
)
|
268 |
-
(intermediate): BertIntermediate(
|
269 |
-
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
-
(intermediate_act_fn): GELUActivation()
|
271 |
-
)
|
272 |
-
(output): BertOutput(
|
273 |
-
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
-
)
|
277 |
-
)
|
278 |
-
(11): BertLayer(
|
279 |
-
(attention): BertAttention(
|
280 |
-
(self): BertSelfAttention(
|
281 |
-
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
-
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
-
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
-
)
|
286 |
-
(output): BertSelfOutput(
|
287 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
-
)
|
291 |
-
)
|
292 |
-
(intermediate): BertIntermediate(
|
293 |
-
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
-
(intermediate_act_fn): GELUActivation()
|
295 |
-
)
|
296 |
-
(output): BertOutput(
|
297 |
-
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
-
)
|
301 |
-
)
|
302 |
-
)
|
303 |
-
)
|
304 |
-
(pooler): BertPooler(
|
305 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
-
(activation): Tanh()
|
307 |
)
|
308 |
)
|
309 |
)
|
310 |
(word_dropout): WordDropout(p=0.05)
|
311 |
(locked_dropout): LockedDropout(p=0.5)
|
312 |
-
(rnn): LSTM(
|
313 |
(linear): Linear(in_features=1024, out_features=30, bias=True)
|
314 |
(beta): 1.0
|
315 |
(weights): None
|
316 |
(weight_tensor) None
|
317 |
)"
|
318 |
-
2022-08-06
|
319 |
-
2022-08-06
|
320 |
-
2022-08-06
|
321 |
-
2022-08-06
|
322 |
-
2022-08-06
|
323 |
-
2022-08-06
|
324 |
-
2022-08-06
|
325 |
-
2022-08-06
|
326 |
-
2022-08-06
|
327 |
-
2022-08-06
|
328 |
-
2022-08-06
|
329 |
-
2022-08-06
|
330 |
-
2022-08-06
|
331 |
-
2022-08-06
|
332 |
-
2022-08-06
|
333 |
-
2022-08-06
|
334 |
-
2022-08-06
|
335 |
-
2022-08-06
|
336 |
-
2022-08-06
|
337 |
-
2022-08-06
|
338 |
-
2022-08-06
|
339 |
-
2022-08-06
|
340 |
-
2022-08-06
|
341 |
-
2022-08-06
|
342 |
-
2022-08-06
|
343 |
-
2022-08-06
|
344 |
-
2022-08-06
|
345 |
-
2022-08-06
|
346 |
-
2022-08-06
|
347 |
-
2022-08-06
|
348 |
-
2022-08-06
|
349 |
-
2022-08-06
|
350 |
-
2022-08-06
|
351 |
-
2022-08-06
|
352 |
-
2022-08-06
|
353 |
-
2022-08-06
|
354 |
-
2022-08-06
|
355 |
-
2022-08-06
|
356 |
-
2022-08-06
|
357 |
-
2022-08-06
|
358 |
-
2022-08-06
|
359 |
-
2022-08-06
|
360 |
-
2022-08-06
|
361 |
-
2022-08-06
|
362 |
-
2022-08-06
|
363 |
-
2022-08-06
|
364 |
-
2022-08-06
|
365 |
-
2022-08-06
|
366 |
-
2022-08-06
|
367 |
-
2022-08-06
|
368 |
-
2022-08-06
|
369 |
-
2022-08-06
|
370 |
-
2022-08-06
|
371 |
-
2022-08-06
|
372 |
-
2022-08-06
|
373 |
-
2022-08-06
|
374 |
-
2022-08-06
|
375 |
-
2022-08-06
|
376 |
-
2022-08-06
|
377 |
-
2022-08-06
|
378 |
-
2022-08-06
|
379 |
-
2022-08-06
|
380 |
-
2022-08-06
|
381 |
-
2022-08-06
|
382 |
-
2022-08-06
|
383 |
-
2022-08-06
|
384 |
-
2022-08-06
|
385 |
-
2022-08-06
|
386 |
-
2022-08-06
|
387 |
-
2022-08-06
|
388 |
-
2022-08-06
|
389 |
-
2022-08-06
|
390 |
-
2022-08-06
|
391 |
-
2022-08-06
|
392 |
-
2022-08-06
|
393 |
-
2022-08-06
|
394 |
-
2022-08-06
|
395 |
-
2022-08-06
|
396 |
-
2022-08-06
|
397 |
-
2022-08-06
|
398 |
-
2022-08-06
|
399 |
-
2022-08-06
|
400 |
-
2022-08-06
|
401 |
-
2022-08-06
|
402 |
-
2022-08-06
|
403 |
-
2022-08-06
|
404 |
-
2022-08-06
|
405 |
-
2022-08-06
|
406 |
-
2022-08-06
|
407 |
-
2022-08-06
|
408 |
-
2022-08-06
|
409 |
-
2022-08-06
|
410 |
-
2022-08-06
|
411 |
-
2022-08-06
|
412 |
-
2022-08-06
|
413 |
-
2022-08-06
|
414 |
-
2022-08-06
|
415 |
-
2022-08-06
|
416 |
-
2022-08-06
|
417 |
-
2022-08-06
|
418 |
-
2022-08-06
|
419 |
-
2022-08-06
|
420 |
-
2022-08-06
|
421 |
-
2022-08-06
|
422 |
-
2022-08-06
|
423 |
-
2022-08-06
|
424 |
-
2022-08-06
|
425 |
-
2022-08-06
|
426 |
-
2022-08-06
|
427 |
-
2022-08-06
|
428 |
-
2022-08-06
|
429 |
-
2022-08-06
|
430 |
-
2022-08-06
|
431 |
-
2022-08-06
|
432 |
-
2022-08-06
|
433 |
-
2022-08-06
|
434 |
-
2022-08-06
|
435 |
-
2022-08-06
|
436 |
-
2022-08-06
|
437 |
-
2022-08-06
|
438 |
-
2022-08-06
|
439 |
-
2022-08-06
|
440 |
-
2022-08-06
|
441 |
-
2022-08-06
|
442 |
-
2022-08-06
|
443 |
-
2022-08-06
|
444 |
-
2022-08-06
|
445 |
-
2022-08-06
|
446 |
-
2022-08-06
|
447 |
-
2022-08-06
|
448 |
-
2022-08-06
|
449 |
-
2022-08-06
|
450 |
-
2022-08-06
|
451 |
-
2022-08-06
|
452 |
-
2022-08-06
|
453 |
-
2022-08-06
|
454 |
-
2022-08-06
|
455 |
-
2022-08-06
|
456 |
-
2022-08-06
|
457 |
-
2022-08-06
|
458 |
-
2022-08-06
|
459 |
-
2022-08-06
|
460 |
-
2022-08-06
|
461 |
-
2022-08-06
|
462 |
-
2022-08-06
|
463 |
-
2022-08-06
|
464 |
-
2022-08-06
|
465 |
-
2022-08-06
|
466 |
-
2022-08-06
|
467 |
-
2022-08-06
|
468 |
-
2022-08-06
|
469 |
-
2022-08-06
|
470 |
-
2022-08-06
|
471 |
-
2022-08-06
|
472 |
-
2022-08-06
|
473 |
-
2022-08-06
|
474 |
-
2022-08-06
|
475 |
-
2022-08-06
|
476 |
-
2022-08-06
|
477 |
-
2022-08-06
|
478 |
-
2022-08-06
|
479 |
-
2022-08-06
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
Results:
|
481 |
-
- F-score (micro) 0.
|
482 |
-
- F-score (macro) 0.
|
483 |
-
- Accuracy 0.
|
484 |
|
485 |
By class:
|
486 |
precision recall f1-score support
|
487 |
|
488 |
-
N_SING 0.
|
489 |
-
P 0.
|
490 |
-
DELM 0.
|
491 |
-
ADJ 0.
|
492 |
-
CON 0.
|
493 |
-
N_PL 0.
|
494 |
-
V_PA 0.
|
495 |
-
V_PRS 0.
|
496 |
-
|
497 |
-
|
498 |
-
DET 0.
|
499 |
-
CLITIC
|
500 |
-
V_PP 0.
|
501 |
-
V_SUB 0.
|
502 |
-
ADV 0.
|
503 |
-
ADV_TIME 0.
|
504 |
-
V_AUX 0.
|
505 |
-
ADJ_SUP 0.
|
506 |
-
ADJ_CMPR 0.
|
507 |
-
ADJ_INO 0.
|
508 |
-
ADV_NEG 0.
|
509 |
-
ADV_I 0.
|
510 |
-
FW 0.
|
511 |
-
ADV_COMP 0.
|
512 |
-
ADV_LOC 0.
|
513 |
-
V_IMP 0.
|
514 |
-
PREV 0.
|
515 |
-
INT 0.
|
|
|
516 |
|
517 |
-
micro avg 0.
|
518 |
-
macro avg 0.
|
519 |
-
weighted avg 0.
|
520 |
-
samples avg 0.
|
521 |
|
522 |
-
2022-08-06
|
|
|
1 |
+
2022-08-06 17:35:48,202 ----------------------------------------------------------------------------------------------------
|
2 |
+
2022-08-06 17:35:48,202 Model: "SequenceTagger(
|
3 |
+
(embeddings): StackedEmbeddings(
|
4 |
+
(list_embedding_0): WordEmbeddings('fa')
|
5 |
+
(list_embedding_1): FlairEmbeddings(
|
6 |
+
(lm): LanguageModel(
|
7 |
+
(drop): Dropout(p=0.1, inplace=False)
|
8 |
+
(encoder): Embedding(5105, 100)
|
9 |
+
(rnn): LSTM(100, 2048)
|
10 |
+
(decoder): Linear(in_features=2048, out_features=5105, bias=True)
|
11 |
)
|
12 |
+
)
|
13 |
+
(list_embedding_2): FlairEmbeddings(
|
14 |
+
(lm): LanguageModel(
|
15 |
+
(drop): Dropout(p=0.1, inplace=False)
|
16 |
+
(encoder): Embedding(5105, 100)
|
17 |
+
(rnn): LSTM(100, 2048)
|
18 |
+
(decoder): Linear(in_features=2048, out_features=5105, bias=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
)
|
20 |
)
|
21 |
)
|
22 |
(word_dropout): WordDropout(p=0.05)
|
23 |
(locked_dropout): LockedDropout(p=0.5)
|
24 |
+
(rnn): LSTM(4396, 512, batch_first=True, bidirectional=True)
|
25 |
(linear): Linear(in_features=1024, out_features=30, bias=True)
|
26 |
(beta): 1.0
|
27 |
(weights): None
|
28 |
(weight_tensor) None
|
29 |
)"
|
30 |
+
2022-08-06 17:35:48,203 ----------------------------------------------------------------------------------------------------
|
31 |
+
2022-08-06 17:35:48,203 Corpus: "Corpus: 24000 train + 3000 dev + 3000 test sentences"
|
32 |
+
2022-08-06 17:35:48,203 ----------------------------------------------------------------------------------------------------
|
33 |
+
2022-08-06 17:35:48,203 Parameters:
|
34 |
+
2022-08-06 17:35:48,203 - learning_rate: "0.1"
|
35 |
+
2022-08-06 17:35:48,203 - mini_batch_size: "8"
|
36 |
+
2022-08-06 17:35:48,203 - patience: "3"
|
37 |
+
2022-08-06 17:35:48,203 - anneal_factor: "0.5"
|
38 |
+
2022-08-06 17:35:48,203 - max_epochs: "25"
|
39 |
+
2022-08-06 17:35:48,203 - shuffle: "True"
|
40 |
+
2022-08-06 17:35:48,203 - train_with_dev: "True"
|
41 |
+
2022-08-06 17:35:48,203 - batch_growth_annealing: "False"
|
42 |
+
2022-08-06 17:35:48,203 ----------------------------------------------------------------------------------------------------
|
43 |
+
2022-08-06 17:35:48,203 Model training base path: "data/pos-Uppsala/model2"
|
44 |
+
2022-08-06 17:35:48,203 ----------------------------------------------------------------------------------------------------
|
45 |
+
2022-08-06 17:35:48,203 Device: cuda:0
|
46 |
+
2022-08-06 17:35:48,203 ----------------------------------------------------------------------------------------------------
|
47 |
+
2022-08-06 17:35:48,203 Embeddings storage mode: gpu
|
48 |
+
2022-08-06 17:35:48,204 ----------------------------------------------------------------------------------------------------
|
49 |
+
2022-08-06 17:36:07,702 epoch 1 - iter 337/3375 - loss 0.77290691 - samples/sec: 138.41 - lr: 0.100000
|
50 |
+
2022-08-06 17:36:34,210 epoch 1 - iter 674/3375 - loss 0.55640684 - samples/sec: 101.78 - lr: 0.100000
|
51 |
+
2022-08-06 17:36:57,947 epoch 1 - iter 1011/3375 - loss 0.48188686 - samples/sec: 113.68 - lr: 0.100000
|
52 |
+
2022-08-06 17:37:26,596 epoch 1 - iter 1348/3375 - loss 0.42604018 - samples/sec: 94.17 - lr: 0.100000
|
53 |
+
2022-08-06 17:37:51,571 epoch 1 - iter 1685/3375 - loss 0.39190904 - samples/sec: 108.03 - lr: 0.100000
|
54 |
+
2022-08-06 17:38:15,619 epoch 1 - iter 2022/3375 - loss 0.36624726 - samples/sec: 112.20 - lr: 0.100000
|
55 |
+
2022-08-06 17:38:39,142 epoch 1 - iter 2359/3375 - loss 0.34624083 - samples/sec: 114.72 - lr: 0.100000
|
56 |
+
2022-08-06 17:39:02,810 epoch 1 - iter 2696/3375 - loss 0.33885530 - samples/sec: 113.99 - lr: 0.100000
|
57 |
+
2022-08-06 17:39:28,607 epoch 1 - iter 3033/3375 - loss 0.32396264 - samples/sec: 104.59 - lr: 0.100000
|
58 |
+
2022-08-06 17:39:57,555 epoch 1 - iter 3370/3375 - loss 0.31127943 - samples/sec: 93.19 - lr: 0.100000
|
59 |
+
2022-08-06 17:39:58,067 ----------------------------------------------------------------------------------------------------
|
60 |
+
2022-08-06 17:39:58,067 EPOCH 1 done: loss 0.3110 - lr 0.1000000
|
61 |
+
2022-08-06 17:39:58,067 BAD EPOCHS (no improvement): 0
|
62 |
+
2022-08-06 17:39:58,067 ----------------------------------------------------------------------------------------------------
|
63 |
+
2022-08-06 17:40:03,822 epoch 2 - iter 337/3375 - loss 0.22000243 - samples/sec: 470.89 - lr: 0.100000
|
64 |
+
2022-08-06 17:40:08,271 epoch 2 - iter 674/3375 - loss 0.21810059 - samples/sec: 608.44 - lr: 0.100000
|
65 |
+
2022-08-06 17:40:12,545 epoch 2 - iter 1011/3375 - loss 0.21667145 - samples/sec: 633.25 - lr: 0.100000
|
66 |
+
2022-08-06 17:40:16,752 epoch 2 - iter 1348/3375 - loss 0.21318611 - samples/sec: 643.42 - lr: 0.100000
|
67 |
+
2022-08-06 17:40:20,957 epoch 2 - iter 1685/3375 - loss 0.21031869 - samples/sec: 643.76 - lr: 0.100000
|
68 |
+
2022-08-06 17:40:25,137 epoch 2 - iter 2022/3375 - loss 0.20983332 - samples/sec: 647.48 - lr: 0.100000
|
69 |
+
2022-08-06 17:40:29,599 epoch 2 - iter 2359/3375 - loss 0.20703899 - samples/sec: 606.71 - lr: 0.100000
|
70 |
+
2022-08-06 17:40:34,023 epoch 2 - iter 2696/3375 - loss 0.20541980 - samples/sec: 611.99 - lr: 0.100000
|
71 |
+
2022-08-06 17:40:38,282 epoch 2 - iter 3033/3375 - loss 0.20260610 - samples/sec: 635.82 - lr: 0.100000
|
72 |
+
2022-08-06 17:40:42,609 epoch 2 - iter 3370/3375 - loss 0.20057442 - samples/sec: 625.77 - lr: 0.100000
|
73 |
+
2022-08-06 17:40:42,665 ----------------------------------------------------------------------------------------------------
|
74 |
+
2022-08-06 17:40:42,665 EPOCH 2 done: loss 0.2006 - lr 0.1000000
|
75 |
+
2022-08-06 17:40:42,665 BAD EPOCHS (no improvement): 0
|
76 |
+
2022-08-06 17:40:42,666 ----------------------------------------------------------------------------------------------------
|
77 |
+
2022-08-06 17:40:47,025 epoch 3 - iter 337/3375 - loss 0.17771924 - samples/sec: 621.20 - lr: 0.100000
|
78 |
+
2022-08-06 17:40:51,398 epoch 3 - iter 674/3375 - loss 0.17936778 - samples/sec: 619.19 - lr: 0.100000
|
79 |
+
2022-08-06 17:40:56,125 epoch 3 - iter 1011/3375 - loss 0.18121841 - samples/sec: 572.69 - lr: 0.100000
|
80 |
+
2022-08-06 17:41:00,518 epoch 3 - iter 1348/3375 - loss 0.17922858 - samples/sec: 616.39 - lr: 0.100000
|
81 |
+
2022-08-06 17:41:04,814 epoch 3 - iter 1685/3375 - loss 0.17910916 - samples/sec: 629.94 - lr: 0.100000
|
82 |
+
2022-08-06 17:41:09,164 epoch 3 - iter 2022/3375 - loss 0.17786989 - samples/sec: 622.33 - lr: 0.100000
|
83 |
+
2022-08-06 17:41:13,758 epoch 3 - iter 2359/3375 - loss 0.17680080 - samples/sec: 589.38 - lr: 0.100000
|
84 |
+
2022-08-06 17:41:18,128 epoch 3 - iter 2696/3375 - loss 0.17616815 - samples/sec: 619.46 - lr: 0.100000
|
85 |
+
2022-08-06 17:41:22,541 epoch 3 - iter 3033/3375 - loss 0.17461992 - samples/sec: 613.49 - lr: 0.100000
|
86 |
+
2022-08-06 17:41:27,173 epoch 3 - iter 3370/3375 - loss 0.17265068 - samples/sec: 584.33 - lr: 0.100000
|
87 |
+
2022-08-06 17:41:27,251 ----------------------------------------------------------------------------------------------------
|
88 |
+
2022-08-06 17:41:27,251 EPOCH 3 done: loss 0.1726 - lr 0.1000000
|
89 |
+
2022-08-06 17:41:27,251 BAD EPOCHS (no improvement): 0
|
90 |
+
2022-08-06 17:41:27,251 ----------------------------------------------------------------------------------------------------
|
91 |
+
2022-08-06 17:41:31,673 epoch 4 - iter 337/3375 - loss 0.15437579 - samples/sec: 612.33 - lr: 0.100000
|
92 |
+
2022-08-06 17:41:36,072 epoch 4 - iter 674/3375 - loss 0.15652144 - samples/sec: 615.26 - lr: 0.100000
|
93 |
+
2022-08-06 17:41:40,469 epoch 4 - iter 1011/3375 - loss 0.15490180 - samples/sec: 615.65 - lr: 0.100000
|
94 |
+
2022-08-06 17:41:44,794 epoch 4 - iter 1348/3375 - loss 0.15480884 - samples/sec: 625.89 - lr: 0.100000
|
95 |
+
2022-08-06 17:41:49,059 epoch 4 - iter 1685/3375 - loss 0.15396863 - samples/sec: 634.71 - lr: 0.100000
|
96 |
+
2022-08-06 17:41:53,454 epoch 4 - iter 2022/3375 - loss 0.15340456 - samples/sec: 615.96 - lr: 0.100000
|
97 |
+
2022-08-06 17:41:58,152 epoch 4 - iter 2359/3375 - loss 0.15515344 - samples/sec: 576.18 - lr: 0.100000
|
98 |
+
2022-08-06 17:42:02,284 epoch 4 - iter 2696/3375 - loss 0.15519133 - samples/sec: 655.28 - lr: 0.100000
|
99 |
+
2022-08-06 17:42:06,584 epoch 4 - iter 3033/3375 - loss 0.15564569 - samples/sec: 629.61 - lr: 0.100000
|
100 |
+
2022-08-06 17:42:11,133 epoch 4 - iter 3370/3375 - loss 0.15577193 - samples/sec: 595.04 - lr: 0.100000
|
101 |
+
2022-08-06 17:42:11,209 ----------------------------------------------------------------------------------------------------
|
102 |
+
2022-08-06 17:42:11,209 EPOCH 4 done: loss 0.1558 - lr 0.1000000
|
103 |
+
2022-08-06 17:42:11,209 BAD EPOCHS (no improvement): 0
|
104 |
+
2022-08-06 17:42:11,209 ----------------------------------------------------------------------------------------------------
|
105 |
+
2022-08-06 17:42:15,710 epoch 5 - iter 337/3375 - loss 0.16345933 - samples/sec: 601.61 - lr: 0.100000
|
106 |
+
2022-08-06 17:42:20,321 epoch 5 - iter 674/3375 - loss 0.15117171 - samples/sec: 587.22 - lr: 0.100000
|
107 |
+
2022-08-06 17:42:24,785 epoch 5 - iter 1011/3375 - loss 0.14779631 - samples/sec: 606.48 - lr: 0.100000
|
108 |
+
2022-08-06 17:42:29,011 epoch 5 - iter 1348/3375 - loss 0.14941071 - samples/sec: 640.49 - lr: 0.100000
|
109 |
+
2022-08-06 17:42:33,568 epoch 5 - iter 1685/3375 - loss 0.14817966 - samples/sec: 594.13 - lr: 0.100000
|
110 |
+
2022-08-06 17:42:37,869 epoch 5 - iter 2022/3375 - loss 0.14807553 - samples/sec: 629.20 - lr: 0.100000
|
111 |
+
2022-08-06 17:42:42,062 epoch 5 - iter 2359/3375 - loss 0.14806238 - samples/sec: 645.63 - lr: 0.100000
|
112 |
+
2022-08-06 17:42:46,590 epoch 5 - iter 2696/3375 - loss 0.14768088 - samples/sec: 597.74 - lr: 0.100000
|
113 |
+
2022-08-06 17:42:51,012 epoch 5 - iter 3033/3375 - loss 0.14692530 - samples/sec: 611.95 - lr: 0.100000
|
114 |
+
2022-08-06 17:42:55,435 epoch 5 - iter 3370/3375 - loss 0.14619224 - samples/sec: 612.11 - lr: 0.100000
|
115 |
+
2022-08-06 17:42:55,501 ----------------------------------------------------------------------------------------------------
|
116 |
+
2022-08-06 17:42:55,501 EPOCH 5 done: loss 0.1461 - lr 0.1000000
|
117 |
+
2022-08-06 17:42:55,501 BAD EPOCHS (no improvement): 0
|
118 |
+
2022-08-06 17:42:55,502 ----------------------------------------------------------------------------------------------------
|
119 |
+
2022-08-06 17:43:00,680 epoch 6 - iter 337/3375 - loss 0.12871632 - samples/sec: 523.18 - lr: 0.100000
|
120 |
+
2022-08-06 17:43:05,230 epoch 6 - iter 674/3375 - loss 0.12960435 - samples/sec: 594.96 - lr: 0.100000
|
121 |
+
2022-08-06 17:43:09,879 epoch 6 - iter 1011/3375 - loss 0.13138410 - samples/sec: 582.36 - lr: 0.100000
|
122 |
+
2022-08-06 17:43:14,516 epoch 6 - iter 1348/3375 - loss 0.13677806 - samples/sec: 583.86 - lr: 0.100000
|
123 |
+
2022-08-06 17:43:18,882 epoch 6 - iter 1685/3375 - loss 0.13670652 - samples/sec: 620.11 - lr: 0.100000
|
124 |
+
2022-08-06 17:43:23,704 epoch 6 - iter 2022/3375 - loss 0.13668428 - samples/sec: 561.38 - lr: 0.100000
|
125 |
+
2022-08-06 17:43:28,769 epoch 6 - iter 2359/3375 - loss 0.13640742 - samples/sec: 534.52 - lr: 0.100000
|
126 |
+
2022-08-06 17:43:33,236 epoch 6 - iter 2696/3375 - loss 0.13755392 - samples/sec: 606.04 - lr: 0.100000
|
127 |
+
2022-08-06 17:43:37,586 epoch 6 - iter 3033/3375 - loss 0.13746161 - samples/sec: 622.08 - lr: 0.100000
|
128 |
+
2022-08-06 17:43:42,082 epoch 6 - iter 3370/3375 - loss 0.13723492 - samples/sec: 602.17 - lr: 0.100000
|
129 |
+
2022-08-06 17:43:42,147 ----------------------------------------------------------------------------------------------------
|
130 |
+
2022-08-06 17:43:42,147 EPOCH 6 done: loss 0.1372 - lr 0.1000000
|
131 |
+
2022-08-06 17:43:42,147 BAD EPOCHS (no improvement): 0
|
132 |
+
2022-08-06 17:43:42,147 ----------------------------------------------------------------------------------------------------
|
133 |
+
2022-08-06 17:43:46,395 epoch 7 - iter 337/3375 - loss 0.12821719 - samples/sec: 637.32 - lr: 0.100000
|
134 |
+
2022-08-06 17:43:50,792 epoch 7 - iter 674/3375 - loss 0.12611973 - samples/sec: 615.63 - lr: 0.100000
|
135 |
+
2022-08-06 17:43:55,039 epoch 7 - iter 1011/3375 - loss 0.13539270 - samples/sec: 637.45 - lr: 0.100000
|
136 |
+
2022-08-06 17:44:00,049 epoch 7 - iter 1348/3375 - loss 0.13449392 - samples/sec: 540.37 - lr: 0.100000
|
137 |
+
2022-08-06 17:44:05,561 epoch 7 - iter 1685/3375 - loss 0.13480434 - samples/sec: 491.30 - lr: 0.100000
|
138 |
+
2022-08-06 17:44:09,812 epoch 7 - iter 2022/3375 - loss 0.13393960 - samples/sec: 636.70 - lr: 0.100000
|
139 |
+
2022-08-06 17:44:14,239 epoch 7 - iter 2359/3375 - loss 0.13271508 - samples/sec: 611.43 - lr: 0.100000
|
140 |
+
2022-08-06 17:44:18,867 epoch 7 - iter 2696/3375 - loss 0.13228520 - samples/sec: 584.91 - lr: 0.100000
|
141 |
+
2022-08-06 17:44:23,521 epoch 7 - iter 3033/3375 - loss 0.13150334 - samples/sec: 581.80 - lr: 0.100000
|
142 |
+
2022-08-06 17:44:27,942 epoch 7 - iter 3370/3375 - loss 0.13119164 - samples/sec: 612.23 - lr: 0.100000
|
143 |
+
2022-08-06 17:44:28,021 ----------------------------------------------------------------------------------------------------
|
144 |
+
2022-08-06 17:44:28,021 EPOCH 7 done: loss 0.1312 - lr 0.1000000
|
145 |
+
2022-08-06 17:44:28,021 BAD EPOCHS (no improvement): 0
|
146 |
+
2022-08-06 17:44:28,021 ----------------------------------------------------------------------------------------------------
|
147 |
+
2022-08-06 17:44:32,652 epoch 8 - iter 337/3375 - loss 0.12551768 - samples/sec: 584.91 - lr: 0.100000
|
148 |
+
2022-08-06 17:44:37,159 epoch 8 - iter 674/3375 - loss 0.12325345 - samples/sec: 600.67 - lr: 0.100000
|
149 |
+
2022-08-06 17:44:41,564 epoch 8 - iter 1011/3375 - loss 0.12185993 - samples/sec: 614.59 - lr: 0.100000
|
150 |
+
2022-08-06 17:44:46,122 epoch 8 - iter 1348/3375 - loss 0.12479223 - samples/sec: 593.84 - lr: 0.100000
|
151 |
+
2022-08-06 17:44:50,413 epoch 8 - iter 1685/3375 - loss 0.12366948 - samples/sec: 630.75 - lr: 0.100000
|
152 |
+
2022-08-06 17:44:54,842 epoch 8 - iter 2022/3375 - loss 0.12476122 - samples/sec: 611.10 - lr: 0.100000
|
153 |
+
2022-08-06 17:45:00,389 epoch 8 - iter 2359/3375 - loss 0.12405554 - samples/sec: 488.28 - lr: 0.100000
|
154 |
+
2022-08-06 17:45:04,761 epoch 8 - iter 2696/3375 - loss 0.12467999 - samples/sec: 619.20 - lr: 0.100000
|
155 |
+
2022-08-06 17:45:09,105 epoch 8 - iter 3033/3375 - loss 0.12431931 - samples/sec: 623.01 - lr: 0.100000
|
156 |
+
2022-08-06 17:45:13,364 epoch 8 - iter 3370/3375 - loss 0.12402088 - samples/sec: 635.69 - lr: 0.100000
|
157 |
+
2022-08-06 17:45:13,423 ----------------------------------------------------------------------------------------------------
|
158 |
+
2022-08-06 17:45:13,423 EPOCH 8 done: loss 0.1240 - lr 0.1000000
|
159 |
+
2022-08-06 17:45:13,423 BAD EPOCHS (no improvement): 0
|
160 |
+
2022-08-06 17:45:13,423 ----------------------------------------------------------------------------------------------------
|
161 |
+
2022-08-06 17:45:17,588 epoch 9 - iter 337/3375 - loss 0.11869226 - samples/sec: 650.16 - lr: 0.100000
|
162 |
+
2022-08-06 17:45:21,974 epoch 9 - iter 674/3375 - loss 0.11761429 - samples/sec: 617.37 - lr: 0.100000
|
163 |
+
2022-08-06 17:45:26,393 epoch 9 - iter 1011/3375 - loss 0.12112653 - samples/sec: 612.52 - lr: 0.100000
|
164 |
+
2022-08-06 17:45:30,523 epoch 9 - iter 1348/3375 - loss 0.12016456 - samples/sec: 655.50 - lr: 0.100000
|
165 |
+
2022-08-06 17:45:34,854 epoch 9 - iter 1685/3375 - loss 0.11995454 - samples/sec: 624.96 - lr: 0.100000
|
166 |
+
2022-08-06 17:45:39,585 epoch 9 - iter 2022/3375 - loss 0.12040979 - samples/sec: 572.27 - lr: 0.100000
|
167 |
+
2022-08-06 17:45:44,002 epoch 9 - iter 2359/3375 - loss 0.12200073 - samples/sec: 612.84 - lr: 0.100000
|
168 |
+
2022-08-06 17:45:48,278 epoch 9 - iter 2696/3375 - loss 0.12147852 - samples/sec: 633.10 - lr: 0.100000
|
169 |
+
2022-08-06 17:45:52,885 epoch 9 - iter 3033/3375 - loss 0.12154468 - samples/sec: 587.68 - lr: 0.100000
|
170 |
+
2022-08-06 17:45:57,272 epoch 9 - iter 3370/3375 - loss 0.12092220 - samples/sec: 616.99 - lr: 0.100000
|
171 |
+
2022-08-06 17:45:57,355 ----------------------------------------------------------------------------------------------------
|
172 |
+
2022-08-06 17:45:57,355 EPOCH 9 done: loss 0.1209 - lr 0.1000000
|
173 |
+
2022-08-06 17:45:57,355 BAD EPOCHS (no improvement): 0
|
174 |
+
2022-08-06 17:45:57,355 ----------------------------------------------------------------------------------------------------
|
175 |
+
2022-08-06 17:46:01,777 epoch 10 - iter 337/3375 - loss 0.11757499 - samples/sec: 612.55 - lr: 0.100000
|
176 |
+
2022-08-06 17:46:06,074 epoch 10 - iter 674/3375 - loss 0.11733099 - samples/sec: 629.81 - lr: 0.100000
|
177 |
+
2022-08-06 17:46:10,355 epoch 10 - iter 1011/3375 - loss 0.11998283 - samples/sec: 632.25 - lr: 0.100000
|
178 |
+
2022-08-06 17:46:14,824 epoch 10 - iter 1348/3375 - loss 0.11840153 - samples/sec: 605.68 - lr: 0.100000
|
179 |
+
2022-08-06 17:46:19,148 epoch 10 - iter 1685/3375 - loss 0.11751962 - samples/sec: 626.11 - lr: 0.100000
|
180 |
+
2022-08-06 17:46:23,634 epoch 10 - iter 2022/3375 - loss 0.11761529 - samples/sec: 603.43 - lr: 0.100000
|
181 |
+
2022-08-06 17:46:28,564 epoch 10 - iter 2359/3375 - loss 0.11644619 - samples/sec: 549.14 - lr: 0.100000
|
182 |
+
2022-08-06 17:46:33,013 epoch 10 - iter 2696/3375 - loss 0.11591934 - samples/sec: 608.57 - lr: 0.100000
|
183 |
+
2022-08-06 17:46:37,268 epoch 10 - iter 3033/3375 - loss 0.11548489 - samples/sec: 636.19 - lr: 0.100000
|
184 |
+
2022-08-06 17:46:41,953 epoch 10 - iter 3370/3375 - loss 0.11560614 - samples/sec: 577.69 - lr: 0.100000
|
185 |
+
2022-08-06 17:46:42,039 ----------------------------------------------------------------------------------------------------
|
186 |
+
2022-08-06 17:46:42,039 EPOCH 10 done: loss 0.1155 - lr 0.1000000
|
187 |
+
2022-08-06 17:46:42,039 BAD EPOCHS (no improvement): 0
|
188 |
+
2022-08-06 17:46:42,040 ----------------------------------------------------------------------------------------------------
|
189 |
+
2022-08-06 17:46:47,051 epoch 11 - iter 337/3375 - loss 0.11148632 - samples/sec: 540.53 - lr: 0.100000
|
190 |
+
2022-08-06 17:46:52,152 epoch 11 - iter 674/3375 - loss 0.11042773 - samples/sec: 530.65 - lr: 0.100000
|
191 |
+
2022-08-06 17:46:57,169 epoch 11 - iter 1011/3375 - loss 0.10996054 - samples/sec: 539.75 - lr: 0.100000
|
192 |
+
2022-08-06 17:47:02,418 epoch 11 - iter 1348/3375 - loss 0.11001571 - samples/sec: 515.88 - lr: 0.100000
|
193 |
+
2022-08-06 17:47:06,655 epoch 11 - iter 1685/3375 - loss 0.11159141 - samples/sec: 639.03 - lr: 0.100000
|
194 |
+
2022-08-06 17:47:10,921 epoch 11 - iter 2022/3375 - loss 0.11114012 - samples/sec: 634.58 - lr: 0.100000
|
195 |
+
2022-08-06 17:47:15,457 epoch 11 - iter 2359/3375 - loss 0.11140276 - samples/sec: 596.99 - lr: 0.100000
|
196 |
+
2022-08-06 17:47:19,724 epoch 11 - iter 2696/3375 - loss 0.11244845 - samples/sec: 634.31 - lr: 0.100000
|
197 |
+
2022-08-06 17:47:24,060 epoch 11 - iter 3033/3375 - loss 0.11199352 - samples/sec: 624.32 - lr: 0.100000
|
198 |
+
2022-08-06 17:47:28,621 epoch 11 - iter 3370/3375 - loss 0.11235823 - samples/sec: 593.47 - lr: 0.100000
|
199 |
+
2022-08-06 17:47:28,710 ----------------------------------------------------------------------------------------------------
|
200 |
+
2022-08-06 17:47:28,710 EPOCH 11 done: loss 0.1124 - lr 0.1000000
|
201 |
+
2022-08-06 17:47:28,710 BAD EPOCHS (no improvement): 0
|
202 |
+
2022-08-06 17:47:28,711 ----------------------------------------------------------------------------------------------------
|
203 |
+
2022-08-06 17:47:33,603 epoch 12 - iter 337/3375 - loss 0.10261499 - samples/sec: 553.64 - lr: 0.100000
|
204 |
+
2022-08-06 17:47:38,030 epoch 12 - iter 674/3375 - loss 0.10679532 - samples/sec: 611.69 - lr: 0.100000
|
205 |
+
2022-08-06 17:47:42,435 epoch 12 - iter 1011/3375 - loss 0.10562828 - samples/sec: 614.62 - lr: 0.100000
|
206 |
+
2022-08-06 17:47:46,797 epoch 12 - iter 1348/3375 - loss 0.10608638 - samples/sec: 620.71 - lr: 0.100000
|
207 |
+
2022-08-06 17:47:51,540 epoch 12 - iter 1685/3375 - loss 0.10695263 - samples/sec: 570.80 - lr: 0.100000
|
208 |
+
2022-08-06 17:47:56,079 epoch 12 - iter 2022/3375 - loss 0.10777783 - samples/sec: 596.42 - lr: 0.100000
|
209 |
+
2022-08-06 17:48:00,835 epoch 12 - iter 2359/3375 - loss 0.10792335 - samples/sec: 569.39 - lr: 0.100000
|
210 |
+
2022-08-06 17:48:05,686 epoch 12 - iter 2696/3375 - loss 0.10831173 - samples/sec: 558.08 - lr: 0.100000
|
211 |
+
2022-08-06 17:48:10,274 epoch 12 - iter 3033/3375 - loss 0.10918512 - samples/sec: 590.06 - lr: 0.100000
|
212 |
+
2022-08-06 17:48:14,536 epoch 12 - iter 3370/3375 - loss 0.10901718 - samples/sec: 635.12 - lr: 0.100000
|
213 |
+
2022-08-06 17:48:14,587 ----------------------------------------------------------------------------------------------------
|
214 |
+
2022-08-06 17:48:14,587 EPOCH 12 done: loss 0.1090 - lr 0.1000000
|
215 |
+
2022-08-06 17:48:14,587 BAD EPOCHS (no improvement): 0
|
216 |
+
2022-08-06 17:48:14,587 ----------------------------------------------------------------------------------------------------
|
217 |
+
2022-08-06 17:48:18,825 epoch 13 - iter 337/3375 - loss 0.10530914 - samples/sec: 638.90 - lr: 0.100000
|
218 |
+
2022-08-06 17:48:23,307 epoch 13 - iter 674/3375 - loss 0.10464441 - samples/sec: 603.86 - lr: 0.100000
|
219 |
+
2022-08-06 17:48:27,651 epoch 13 - iter 1011/3375 - loss 0.10306362 - samples/sec: 623.29 - lr: 0.100000
|
220 |
+
2022-08-06 17:48:32,134 epoch 13 - iter 1348/3375 - loss 0.10420551 - samples/sec: 603.86 - lr: 0.100000
|
221 |
+
2022-08-06 17:48:36,266 epoch 13 - iter 1685/3375 - loss 0.10452131 - samples/sec: 655.29 - lr: 0.100000
|
222 |
+
2022-08-06 17:48:40,833 epoch 13 - iter 2022/3375 - loss 0.10408465 - samples/sec: 592.81 - lr: 0.100000
|
223 |
+
2022-08-06 17:48:45,313 epoch 13 - iter 2359/3375 - loss 0.10568763 - samples/sec: 604.26 - lr: 0.100000
|
224 |
+
2022-08-06 17:48:49,615 epoch 13 - iter 2696/3375 - loss 0.10543009 - samples/sec: 629.36 - lr: 0.100000
|
225 |
+
2022-08-06 17:48:54,244 epoch 13 - iter 3033/3375 - loss 0.10589822 - samples/sec: 584.89 - lr: 0.100000
|
226 |
+
2022-08-06 17:48:58,821 epoch 13 - iter 3370/3375 - loss 0.10586039 - samples/sec: 591.43 - lr: 0.100000
|
227 |
+
2022-08-06 17:48:58,876 ----------------------------------------------------------------------------------------------------
|
228 |
+
2022-08-06 17:48:58,876 EPOCH 13 done: loss 0.1058 - lr 0.1000000
|
229 |
+
2022-08-06 17:48:58,876 BAD EPOCHS (no improvement): 0
|
230 |
+
2022-08-06 17:48:58,876 ----------------------------------------------------------------------------------------------------
|
231 |
+
2022-08-06 17:49:03,753 epoch 14 - iter 337/3375 - loss 0.10266463 - samples/sec: 555.22 - lr: 0.100000
|
232 |
+
2022-08-06 17:49:08,105 epoch 14 - iter 674/3375 - loss 0.09986994 - samples/sec: 622.09 - lr: 0.100000
|
233 |
+
2022-08-06 17:49:12,382 epoch 14 - iter 1011/3375 - loss 0.10064186 - samples/sec: 632.97 - lr: 0.100000
|
234 |
+
2022-08-06 17:49:16,500 epoch 14 - iter 1348/3375 - loss 0.10036665 - samples/sec: 657.29 - lr: 0.100000
|
235 |
+
2022-08-06 17:49:20,879 epoch 14 - iter 1685/3375 - loss 0.10064704 - samples/sec: 618.21 - lr: 0.100000
|
236 |
+
2022-08-06 17:49:25,715 epoch 14 - iter 2022/3375 - loss 0.10124885 - samples/sec: 559.90 - lr: 0.100000
|
237 |
+
2022-08-06 17:49:30,441 epoch 14 - iter 2359/3375 - loss 0.10219313 - samples/sec: 572.62 - lr: 0.100000
|
238 |
+
2022-08-06 17:49:35,333 epoch 14 - iter 2696/3375 - loss 0.10255165 - samples/sec: 553.46 - lr: 0.100000
|
239 |
+
2022-08-06 17:49:40,241 epoch 14 - iter 3033/3375 - loss 0.10345096 - samples/sec: 551.63 - lr: 0.100000
|
240 |
+
2022-08-06 17:49:44,508 epoch 14 - iter 3370/3375 - loss 0.10320104 - samples/sec: 634.41 - lr: 0.100000
|
241 |
+
2022-08-06 17:49:44,571 ----------------------------------------------------------------------------------------------------
|
242 |
+
2022-08-06 17:49:44,571 EPOCH 14 done: loss 0.1032 - lr 0.1000000
|
243 |
+
2022-08-06 17:49:44,571 BAD EPOCHS (no improvement): 0
|
244 |
+
2022-08-06 17:49:44,572 ----------------------------------------------------------------------------------------------------
|
245 |
+
2022-08-06 17:49:48,789 epoch 15 - iter 337/3375 - loss 0.09291307 - samples/sec: 641.93 - lr: 0.100000
|
246 |
+
2022-08-06 17:49:53,220 epoch 15 - iter 674/3375 - loss 0.09850943 - samples/sec: 611.07 - lr: 0.100000
|
247 |
+
2022-08-06 17:49:58,173 epoch 15 - iter 1011/3375 - loss 0.09952572 - samples/sec: 546.65 - lr: 0.100000
|
248 |
+
2022-08-06 17:50:02,751 epoch 15 - iter 1348/3375 - loss 0.10078682 - samples/sec: 591.25 - lr: 0.100000
|
249 |
+
2022-08-06 17:50:07,256 epoch 15 - iter 1685/3375 - loss 0.09969399 - samples/sec: 601.10 - lr: 0.100000
|
250 |
+
2022-08-06 17:50:11,608 epoch 15 - iter 2022/3375 - loss 0.09989152 - samples/sec: 621.99 - lr: 0.100000
|
251 |
+
2022-08-06 17:50:16,244 epoch 15 - iter 2359/3375 - loss 0.09949392 - samples/sec: 583.90 - lr: 0.100000
|
252 |
+
2022-08-06 17:50:20,702 epoch 15 - iter 2696/3375 - loss 0.09970785 - samples/sec: 607.41 - lr: 0.100000
|
253 |
+
2022-08-06 17:50:25,046 epoch 15 - iter 3033/3375 - loss 0.09973762 - samples/sec: 623.09 - lr: 0.100000
|
254 |
+
2022-08-06 17:50:30,228 epoch 15 - iter 3370/3375 - loss 0.10015630 - samples/sec: 522.57 - lr: 0.100000
|
255 |
+
2022-08-06 17:50:30,326 ----------------------------------------------------------------------------------------------------
|
256 |
+
2022-08-06 17:50:30,326 EPOCH 15 done: loss 0.1002 - lr 0.1000000
|
257 |
+
2022-08-06 17:50:30,326 BAD EPOCHS (no improvement): 0
|
258 |
+
2022-08-06 17:50:30,326 ----------------------------------------------------------------------------------------------------
|
259 |
+
2022-08-06 17:50:34,860 epoch 16 - iter 337/3375 - loss 0.09309189 - samples/sec: 597.50 - lr: 0.100000
|
260 |
+
2022-08-06 17:50:39,588 epoch 16 - iter 674/3375 - loss 0.09433545 - samples/sec: 572.69 - lr: 0.100000
|
261 |
+
2022-08-06 17:50:43,862 epoch 16 - iter 1011/3375 - loss 0.09591019 - samples/sec: 633.44 - lr: 0.100000
|
262 |
+
2022-08-06 17:50:48,264 epoch 16 - iter 1348/3375 - loss 0.09714011 - samples/sec: 615.21 - lr: 0.100000
|
263 |
+
2022-08-06 17:50:52,778 epoch 16 - iter 1685/3375 - loss 0.09734419 - samples/sec: 599.67 - lr: 0.100000
|
264 |
+
2022-08-06 17:50:56,980 epoch 16 - iter 2022/3375 - loss 0.09740550 - samples/sec: 644.23 - lr: 0.100000
|
265 |
+
2022-08-06 17:51:01,265 epoch 16 - iter 2359/3375 - loss 0.09825085 - samples/sec: 631.79 - lr: 0.100000
|
266 |
+
2022-08-06 17:51:05,586 epoch 16 - iter 2696/3375 - loss 0.09761991 - samples/sec: 626.34 - lr: 0.100000
|
267 |
+
2022-08-06 17:51:09,789 epoch 16 - iter 3033/3375 - loss 0.09769947 - samples/sec: 644.03 - lr: 0.100000
|
268 |
+
2022-08-06 17:51:14,125 epoch 16 - iter 3370/3375 - loss 0.09815652 - samples/sec: 624.14 - lr: 0.100000
|
269 |
+
2022-08-06 17:51:14,187 ----------------------------------------------------------------------------------------------------
|
270 |
+
2022-08-06 17:51:14,187 EPOCH 16 done: loss 0.0982 - lr 0.1000000
|
271 |
+
2022-08-06 17:51:14,187 BAD EPOCHS (no improvement): 0
|
272 |
+
2022-08-06 17:51:14,187 ----------------------------------------------------------------------------------------------------
|
273 |
+
2022-08-06 17:51:18,926 epoch 17 - iter 337/3375 - loss 0.09746284 - samples/sec: 571.40 - lr: 0.100000
|
274 |
+
2022-08-06 17:51:23,350 epoch 17 - iter 674/3375 - loss 0.09501375 - samples/sec: 611.81 - lr: 0.100000
|
275 |
+
2022-08-06 17:51:27,538 epoch 17 - iter 1011/3375 - loss 0.09447877 - samples/sec: 646.43 - lr: 0.100000
|
276 |
+
2022-08-06 17:51:32,786 epoch 17 - iter 1348/3375 - loss 0.09548126 - samples/sec: 515.91 - lr: 0.100000
|
277 |
+
2022-08-06 17:51:37,524 epoch 17 - iter 1685/3375 - loss 0.09583694 - samples/sec: 571.43 - lr: 0.100000
|
278 |
+
2022-08-06 17:51:42,195 epoch 17 - iter 2022/3375 - loss 0.09600862 - samples/sec: 579.61 - lr: 0.100000
|
279 |
+
2022-08-06 17:51:46,571 epoch 17 - iter 2359/3375 - loss 0.09545410 - samples/sec: 618.73 - lr: 0.100000
|
280 |
+
2022-08-06 17:51:51,161 epoch 17 - iter 2696/3375 - loss 0.09542768 - samples/sec: 589.75 - lr: 0.100000
|
281 |
+
2022-08-06 17:51:55,581 epoch 17 - iter 3033/3375 - loss 0.09564076 - samples/sec: 612.22 - lr: 0.100000
|
282 |
+
2022-08-06 17:52:00,366 epoch 17 - iter 3370/3375 - loss 0.09552351 - samples/sec: 565.88 - lr: 0.100000
|
283 |
+
2022-08-06 17:52:00,466 ----------------------------------------------------------------------------------------------------
|
284 |
+
2022-08-06 17:52:00,466 EPOCH 17 done: loss 0.0955 - lr 0.1000000
|
285 |
+
2022-08-06 17:52:00,466 BAD EPOCHS (no improvement): 0
|
286 |
+
2022-08-06 17:52:00,467 ----------------------------------------------------------------------------------------------------
|
287 |
+
2022-08-06 17:52:05,126 epoch 18 - iter 337/3375 - loss 0.09523719 - samples/sec: 581.51 - lr: 0.100000
|
288 |
+
2022-08-06 17:52:09,813 epoch 18 - iter 674/3375 - loss 0.09450967 - samples/sec: 577.48 - lr: 0.100000
|
289 |
+
2022-08-06 17:52:14,214 epoch 18 - iter 1011/3375 - loss 0.09350620 - samples/sec: 614.93 - lr: 0.100000
|
290 |
+
2022-08-06 17:52:18,695 epoch 18 - iter 1348/3375 - loss 0.09537413 - samples/sec: 604.13 - lr: 0.100000
|
291 |
+
2022-08-06 17:52:23,194 epoch 18 - iter 1685/3375 - loss 0.09425488 - samples/sec: 601.78 - lr: 0.100000
|
292 |
+
2022-08-06 17:52:27,455 epoch 18 - iter 2022/3375 - loss 0.09334668 - samples/sec: 635.22 - lr: 0.100000
|
293 |
+
2022-08-06 17:52:31,848 epoch 18 - iter 2359/3375 - loss 0.09344352 - samples/sec: 616.12 - lr: 0.100000
|
294 |
+
2022-08-06 17:52:36,473 epoch 18 - iter 2696/3375 - loss 0.09299327 - samples/sec: 585.57 - lr: 0.100000
|
295 |
+
2022-08-06 17:52:41,003 epoch 18 - iter 3033/3375 - loss 0.09300260 - samples/sec: 597.47 - lr: 0.100000
|
296 |
+
2022-08-06 17:52:45,386 epoch 18 - iter 3370/3375 - loss 0.09343840 - samples/sec: 617.52 - lr: 0.100000
|
297 |
+
2022-08-06 17:52:45,447 ----------------------------------------------------------------------------------------------------
|
298 |
+
2022-08-06 17:52:45,447 EPOCH 18 done: loss 0.0934 - lr 0.1000000
|
299 |
+
2022-08-06 17:52:45,447 BAD EPOCHS (no improvement): 0
|
300 |
+
2022-08-06 17:52:45,447 ----------------------------------------------------------------------------------------------------
|
301 |
+
2022-08-06 17:52:50,328 epoch 19 - iter 337/3375 - loss 0.09183730 - samples/sec: 555.07 - lr: 0.100000
|
302 |
+
2022-08-06 17:52:54,916 epoch 19 - iter 674/3375 - loss 0.09369803 - samples/sec: 590.07 - lr: 0.100000
|
303 |
+
2022-08-06 17:52:59,194 epoch 19 - iter 1011/3375 - loss 0.09249498 - samples/sec: 632.78 - lr: 0.100000
|
304 |
+
2022-08-06 17:53:04,075 epoch 19 - iter 1348/3375 - loss 0.09142685 - samples/sec: 554.67 - lr: 0.100000
|
305 |
+
2022-08-06 17:53:08,444 epoch 19 - iter 1685/3375 - loss 0.09456761 - samples/sec: 619.54 - lr: 0.100000
|
306 |
+
2022-08-06 17:53:12,935 epoch 19 - iter 2022/3375 - loss 0.09320509 - samples/sec: 602.65 - lr: 0.100000
|
307 |
+
2022-08-06 17:53:17,403 epoch 19 - iter 2359/3375 - loss 0.09305377 - samples/sec: 605.93 - lr: 0.100000
|
308 |
+
2022-08-06 17:53:21,539 epoch 19 - iter 2696/3375 - loss 0.09314087 - samples/sec: 654.49 - lr: 0.100000
|
309 |
+
2022-08-06 17:53:25,681 epoch 19 - iter 3033/3375 - loss 0.09290888 - samples/sec: 653.59 - lr: 0.100000
|
310 |
+
2022-08-06 17:53:30,867 epoch 19 - iter 3370/3375 - loss 0.09356361 - samples/sec: 522.02 - lr: 0.100000
|
311 |
+
2022-08-06 17:53:30,949 ----------------------------------------------------------------------------------------------------
|
312 |
+
2022-08-06 17:53:30,950 EPOCH 19 done: loss 0.0936 - lr 0.1000000
|
313 |
+
2022-08-06 17:53:30,950 BAD EPOCHS (no improvement): 1
|
314 |
+
2022-08-06 17:53:30,950 ----------------------------------------------------------------------------------------------------
|
315 |
+
2022-08-06 17:53:35,766 epoch 20 - iter 337/3375 - loss 0.08592285 - samples/sec: 562.61 - lr: 0.100000
|
316 |
+
2022-08-06 17:53:40,368 epoch 20 - iter 674/3375 - loss 0.08824294 - samples/sec: 588.15 - lr: 0.100000
|
317 |
+
2022-08-06 17:53:44,867 epoch 20 - iter 1011/3375 - loss 0.08782340 - samples/sec: 601.81 - lr: 0.100000
|
318 |
+
2022-08-06 17:53:49,378 epoch 20 - iter 1348/3375 - loss 0.08879308 - samples/sec: 600.08 - lr: 0.100000
|
319 |
+
2022-08-06 17:53:53,750 epoch 20 - iter 1685/3375 - loss 0.08912537 - samples/sec: 619.31 - lr: 0.100000
|
320 |
+
2022-08-06 17:53:58,438 epoch 20 - iter 2022/3375 - loss 0.08964443 - samples/sec: 577.38 - lr: 0.100000
|
321 |
+
2022-08-06 17:54:03,640 epoch 20 - iter 2359/3375 - loss 0.09111402 - samples/sec: 520.50 - lr: 0.100000
|
322 |
+
2022-08-06 17:54:08,314 epoch 20 - iter 2696/3375 - loss 0.09094169 - samples/sec: 579.27 - lr: 0.100000
|
323 |
+
2022-08-06 17:54:12,604 epoch 20 - iter 3033/3375 - loss 0.09075914 - samples/sec: 631.05 - lr: 0.100000
|
324 |
+
2022-08-06 17:54:16,884 epoch 20 - iter 3370/3375 - loss 0.09071504 - samples/sec: 632.42 - lr: 0.100000
|
325 |
+
2022-08-06 17:54:16,961 ----------------------------------------------------------------------------------------------------
|
326 |
+
2022-08-06 17:54:16,961 EPOCH 20 done: loss 0.0907 - lr 0.1000000
|
327 |
+
2022-08-06 17:54:16,961 BAD EPOCHS (no improvement): 0
|
328 |
+
2022-08-06 17:54:16,962 ----------------------------------------------------------------------------------------------------
|
329 |
+
2022-08-06 17:54:21,579 epoch 21 - iter 337/3375 - loss 0.08841872 - samples/sec: 586.44 - lr: 0.100000
|
330 |
+
2022-08-06 17:54:25,873 epoch 21 - iter 674/3375 - loss 0.09033463 - samples/sec: 630.54 - lr: 0.100000
|
331 |
+
2022-08-06 17:54:30,408 epoch 21 - iter 1011/3375 - loss 0.08778770 - samples/sec: 596.92 - lr: 0.100000
|
332 |
+
2022-08-06 17:54:35,094 epoch 21 - iter 1348/3375 - loss 0.08826479 - samples/sec: 577.63 - lr: 0.100000
|
333 |
+
2022-08-06 17:54:39,794 epoch 21 - iter 1685/3375 - loss 0.08952893 - samples/sec: 575.93 - lr: 0.100000
|
334 |
+
2022-08-06 17:54:44,231 epoch 21 - iter 2022/3375 - loss 0.08859231 - samples/sec: 610.18 - lr: 0.100000
|
335 |
+
2022-08-06 17:54:48,578 epoch 21 - iter 2359/3375 - loss 0.08908605 - samples/sec: 622.78 - lr: 0.100000
|
336 |
+
2022-08-06 17:54:53,007 epoch 21 - iter 2696/3375 - loss 0.08985834 - samples/sec: 611.21 - lr: 0.100000
|
337 |
+
2022-08-06 17:54:57,442 epoch 21 - iter 3033/3375 - loss 0.08930750 - samples/sec: 610.45 - lr: 0.100000
|
338 |
+
2022-08-06 17:55:02,206 epoch 21 - iter 3370/3375 - loss 0.08932127 - samples/sec: 568.31 - lr: 0.100000
|
339 |
+
2022-08-06 17:55:02,283 ----------------------------------------------------------------------------------------------------
|
340 |
+
2022-08-06 17:55:02,283 EPOCH 21 done: loss 0.0894 - lr 0.1000000
|
341 |
+
2022-08-06 17:55:02,283 BAD EPOCHS (no improvement): 0
|
342 |
+
2022-08-06 17:55:02,283 ----------------------------------------------------------------------------------------------------
|
343 |
+
2022-08-06 17:55:06,802 epoch 22 - iter 337/3375 - loss 0.09520887 - samples/sec: 599.23 - lr: 0.100000
|
344 |
+
2022-08-06 17:55:10,986 epoch 22 - iter 674/3375 - loss 0.08822703 - samples/sec: 646.83 - lr: 0.100000
|
345 |
+
2022-08-06 17:55:15,255 epoch 22 - iter 1011/3375 - loss 0.08622536 - samples/sec: 634.09 - lr: 0.100000
|
346 |
+
2022-08-06 17:55:19,649 epoch 22 - iter 1348/3375 - loss 0.08564414 - samples/sec: 616.17 - lr: 0.100000
|
347 |
+
2022-08-06 17:55:24,104 epoch 22 - iter 1685/3375 - loss 0.08673066 - samples/sec: 607.75 - lr: 0.100000
|
348 |
+
2022-08-06 17:55:28,976 epoch 22 - iter 2022/3375 - loss 0.08631774 - samples/sec: 555.74 - lr: 0.100000
|
349 |
+
2022-08-06 17:55:34,330 epoch 22 - iter 2359/3375 - loss 0.08715661 - samples/sec: 505.64 - lr: 0.100000
|
350 |
+
2022-08-06 17:55:38,933 epoch 22 - iter 2696/3375 - loss 0.08728198 - samples/sec: 588.32 - lr: 0.100000
|
351 |
+
2022-08-06 17:55:43,208 epoch 22 - iter 3033/3375 - loss 0.08684389 - samples/sec: 633.19 - lr: 0.100000
|
352 |
+
2022-08-06 17:55:47,534 epoch 22 - iter 3370/3375 - loss 0.08722766 - samples/sec: 625.79 - lr: 0.100000
|
353 |
+
2022-08-06 17:55:47,604 ----------------------------------------------------------------------------------------------------
|
354 |
+
2022-08-06 17:55:47,604 EPOCH 22 done: loss 0.0872 - lr 0.1000000
|
355 |
+
2022-08-06 17:55:47,604 BAD EPOCHS (no improvement): 0
|
356 |
+
2022-08-06 17:55:47,604 ----------------------------------------------------------------------------------------------------
|
357 |
+
2022-08-06 17:55:52,186 epoch 23 - iter 337/3375 - loss 0.08017333 - samples/sec: 590.96 - lr: 0.100000
|
358 |
+
2022-08-06 17:55:56,925 epoch 23 - iter 674/3375 - loss 0.08566375 - samples/sec: 571.20 - lr: 0.100000
|
359 |
+
2022-08-06 17:56:02,124 epoch 23 - iter 1011/3375 - loss 0.08434552 - samples/sec: 520.85 - lr: 0.100000
|
360 |
+
2022-08-06 17:56:06,416 epoch 23 - iter 1348/3375 - loss 0.08355178 - samples/sec: 630.72 - lr: 0.100000
|
361 |
+
2022-08-06 17:56:10,582 epoch 23 - iter 1685/3375 - loss 0.08448399 - samples/sec: 649.88 - lr: 0.100000
|
362 |
+
2022-08-06 17:56:14,769 epoch 23 - iter 2022/3375 - loss 0.08326237 - samples/sec: 646.48 - lr: 0.100000
|
363 |
+
2022-08-06 17:56:20,143 epoch 23 - iter 2359/3375 - loss 0.08403657 - samples/sec: 503.87 - lr: 0.100000
|
364 |
+
2022-08-06 17:56:24,669 epoch 23 - iter 2696/3375 - loss 0.08457048 - samples/sec: 598.22 - lr: 0.100000
|
365 |
+
2022-08-06 17:56:29,782 epoch 23 - iter 3033/3375 - loss 0.08508802 - samples/sec: 529.51 - lr: 0.100000
|
366 |
+
2022-08-06 17:56:35,014 epoch 23 - iter 3370/3375 - loss 0.08481329 - samples/sec: 517.53 - lr: 0.100000
|
367 |
+
2022-08-06 17:56:35,074 ----------------------------------------------------------------------------------------------------
|
368 |
+
2022-08-06 17:56:35,074 EPOCH 23 done: loss 0.0848 - lr 0.1000000
|
369 |
+
2022-08-06 17:56:35,074 BAD EPOCHS (no improvement): 0
|
370 |
+
2022-08-06 17:56:35,074 ----------------------------------------------------------------------------------------------------
|
371 |
+
2022-08-06 17:56:39,343 epoch 24 - iter 337/3375 - loss 0.07795316 - samples/sec: 634.54 - lr: 0.100000
|
372 |
+
2022-08-06 17:56:43,602 epoch 24 - iter 674/3375 - loss 0.08697526 - samples/sec: 635.47 - lr: 0.100000
|
373 |
+
2022-08-06 17:56:47,867 epoch 24 - iter 1011/3375 - loss 0.08509757 - samples/sec: 634.63 - lr: 0.100000
|
374 |
+
2022-08-06 17:56:52,131 epoch 24 - iter 1348/3375 - loss 0.08401546 - samples/sec: 634.87 - lr: 0.100000
|
375 |
+
2022-08-06 17:56:56,703 epoch 24 - iter 1685/3375 - loss 0.08334637 - samples/sec: 592.23 - lr: 0.100000
|
376 |
+
2022-08-06 17:57:01,803 epoch 24 - iter 2022/3375 - loss 0.08350469 - samples/sec: 530.86 - lr: 0.100000
|
377 |
+
2022-08-06 17:57:06,426 epoch 24 - iter 2359/3375 - loss 0.08457126 - samples/sec: 585.70 - lr: 0.100000
|
378 |
+
2022-08-06 17:57:10,620 epoch 24 - iter 2696/3375 - loss 0.08411288 - samples/sec: 645.43 - lr: 0.100000
|
379 |
+
2022-08-06 17:57:15,195 epoch 24 - iter 3033/3375 - loss 0.08372175 - samples/sec: 591.91 - lr: 0.100000
|
380 |
+
2022-08-06 17:57:19,534 epoch 24 - iter 3370/3375 - loss 0.08385091 - samples/sec: 623.89 - lr: 0.100000
|
381 |
+
2022-08-06 17:57:19,597 ----------------------------------------------------------------------------------------------------
|
382 |
+
2022-08-06 17:57:19,597 EPOCH 24 done: loss 0.0839 - lr 0.1000000
|
383 |
+
2022-08-06 17:57:19,598 BAD EPOCHS (no improvement): 0
|
384 |
+
2022-08-06 17:57:19,598 ----------------------------------------------------------------------------------------------------
|
385 |
+
2022-08-06 17:57:24,012 epoch 25 - iter 337/3375 - loss 0.08110875 - samples/sec: 613.40 - lr: 0.100000
|
386 |
+
2022-08-06 17:57:28,406 epoch 25 - iter 674/3375 - loss 0.07892701 - samples/sec: 615.98 - lr: 0.100000
|
387 |
+
2022-08-06 17:57:33,858 epoch 25 - iter 1011/3375 - loss 0.07994063 - samples/sec: 496.56 - lr: 0.100000
|
388 |
+
2022-08-06 17:57:38,355 epoch 25 - iter 1348/3375 - loss 0.08204104 - samples/sec: 601.98 - lr: 0.100000
|
389 |
+
2022-08-06 17:57:42,644 epoch 25 - iter 1685/3375 - loss 0.08232195 - samples/sec: 631.36 - lr: 0.100000
|
390 |
+
2022-08-06 17:57:47,142 epoch 25 - iter 2022/3375 - loss 0.08153107 - samples/sec: 601.89 - lr: 0.100000
|
391 |
+
2022-08-06 17:57:51,622 epoch 25 - iter 2359/3375 - loss 0.08242419 - samples/sec: 604.33 - lr: 0.100000
|
392 |
+
2022-08-06 17:57:56,375 epoch 25 - iter 2696/3375 - loss 0.08252423 - samples/sec: 569.51 - lr: 0.100000
|
393 |
+
2022-08-06 17:58:01,711 epoch 25 - iter 3033/3375 - loss 0.08258040 - samples/sec: 507.42 - lr: 0.100000
|
394 |
+
2022-08-06 17:58:06,572 epoch 25 - iter 3370/3375 - loss 0.08268759 - samples/sec: 557.05 - lr: 0.100000
|
395 |
+
2022-08-06 17:58:06,635 ----------------------------------------------------------------------------------------------------
|
396 |
+
2022-08-06 17:58:06,635 EPOCH 25 done: loss 0.0827 - lr 0.1000000
|
397 |
+
2022-08-06 17:58:06,635 BAD EPOCHS (no improvement): 0
|
398 |
+
2022-08-06 17:58:07,628 ----------------------------------------------------------------------------------------------------
|
399 |
+
2022-08-06 17:58:07,629 Testing using last state of model ...
|
400 |
+
2022-08-06 18:01:16,199 0.9702 0.9702 0.9702 0.9702
|
401 |
+
2022-08-06 18:01:16,200
|
402 |
Results:
|
403 |
+
- F-score (micro) 0.9702
|
404 |
+
- F-score (macro) 0.882
|
405 |
+
- Accuracy 0.9702
|
406 |
|
407 |
By class:
|
408 |
precision recall f1-score support
|
409 |
|
410 |
+
N_SING 0.9757 0.9621 0.9689 30553
|
411 |
+
P 0.9586 0.9948 0.9764 9951
|
412 |
+
DELM 0.9985 0.9996 0.9991 8122
|
413 |
+
ADJ 0.9154 0.9379 0.9265 7466
|
414 |
+
CON 0.9913 0.9811 0.9862 6823
|
415 |
+
N_PL 0.9803 0.9733 0.9768 5163
|
416 |
+
V_PA 0.9799 0.9822 0.9811 2873
|
417 |
+
V_PRS 0.9947 0.9894 0.9921 2841
|
418 |
+
NUM 0.9942 0.9978 0.9960 2232
|
419 |
+
PRO 0.9711 0.9522 0.9615 2258
|
420 |
+
DET 0.9576 0.9633 0.9605 1853
|
421 |
+
CLITIC 1.0000 1.0000 1.0000 1259
|
422 |
+
V_PP 0.9742 0.9767 0.9754 1158
|
423 |
+
V_SUB 0.9822 0.9661 0.9741 1031
|
424 |
+
ADV 0.8607 0.8705 0.8655 880
|
425 |
+
ADV_TIME 0.9183 0.9652 0.9412 489
|
426 |
+
V_AUX 0.9921 0.9947 0.9934 379
|
427 |
+
ADJ_SUP 0.9926 0.9889 0.9907 270
|
428 |
+
ADJ_CMPR 0.9397 0.9689 0.9541 193
|
429 |
+
ADJ_INO 0.8312 0.7619 0.7950 168
|
430 |
+
ADV_NEG 0.9357 0.8792 0.9066 149
|
431 |
+
ADV_I 0.8740 0.7929 0.8315 140
|
432 |
+
FW 0.6500 0.6341 0.6420 123
|
433 |
+
ADV_COMP 0.8043 0.9737 0.8810 76
|
434 |
+
ADV_LOC 0.9726 0.9726 0.9726 73
|
435 |
+
V_IMP 0.7091 0.6964 0.7027 56
|
436 |
+
PREV 0.7742 0.7500 0.7619 32
|
437 |
+
INT 0.7778 0.5833 0.6667 24
|
438 |
+
N_VOC 0.0000 0.0000 0.0000 0
|
439 |
|
440 |
+
micro avg 0.9702 0.9702 0.9702 86635
|
441 |
+
macro avg 0.8864 0.8796 0.8820 86635
|
442 |
+
weighted avg 0.9704 0.9702 0.9702 86635
|
443 |
+
samples avg 0.9702 0.9702 0.9702 86635
|
444 |
|
445 |
+
2022-08-06 18:01:16,200 ----------------------------------------------------------------------------------------------------
|